
Extended-configuration-space modelling: comparison and real-time
simulation of Lagrangian dynamics formulations of parallel manipulators

Abstract

This paper presents a method for the real-time simulation of Lagrangian formulation of the dynamics

of parallel manipulators. A choice of generalised coordinates called the extended-configuration-space

is introduced, which builds on the configuration, actuator and task-space coordinates. In particular, the

proposed method presents the versatility to be transformed either into task-space or actuator-space models

without sacrificing the parent models’ computational advantage. A comparative numerical study illustrates

the accuracy and efficiency of the proposed method. Simulation studies on a semi-regular Stewart platform

manipulator (SRSPM) and the 6-RSS manipulator are presented to illustrate the utility of the proposed

formulation.
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1. Introduction

(sc:intro) Simulation of parallel manipulators is difficult, due to complexity in the dynamics modelling

techniques, existence of singularities inside the workspace, stabilisation of the numerical methods used etc.

Several approaches to formulate the dynamics model of parallel manipulators exists in the literature includ-

ing Bond graph-based methods [1](damic2015dynamic), Kane’s method [2](liu2000dynamics), virtual

work [3](tsai2000solving), modified virtual work [4](wang1998new) etc. However, the Newton-Euler and

the Euler-Lagrangian frameworks remain the most two popular methods used for the modelling and anal-

ysis of constrained mechanical systems. Although the recursive Newton-Euler algorithms are preferred

in physics simulation environments [5](todorov2012mujoco), Euler-Lagrangian methods result in a set of

equations compatible for motion simulation [6](saha1999dynamics). Further, Newton-Euler methods gen-

erally imply the need for distinct algorithms for inverse and forward dynamics, whereas the Lagrangian

methods do not. The latter method also elucidates the differential-algebraic structure, which allows the

study of controllability [7](choudhury2000singularity), design of non-linear controllers [8](murray1995nonlinear)

etc. and hence deserve attention for the modelling and simulation of constrained mechanical systems. For

an in-length discussion on this topic, refer to [9](lewis2007worth).

Initial studies on the simulation of parallel manipulators, especially of the Stewart platform type ma-
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nipulators shown in Fig. ??(fig:srspm), were conducted neglecting the leg masses to simplify the problem

as done in [10](fichter1986stewart). Later, the effects of the leg inertias on the accuracy of the dynamics

was studied in [11](ji1993study). It was concluded that the leg inertia had pronounced influence on the dy-

namic behaviour of the system, either when the payload mass is comparably high or when the end-effector

moves fast. Since, several works have used the simplifications as mentioned above for simulation or devel-

opment of control algorithms like the works [12, 13](li1997modeling, davliakos2008model) which neglect

dynamic effects of the legs of SPM. Further, the works [14, 15](lee2003position, nguyen1993adaptive)

restrain the workspace and velocity of the moving platform to assume the non-linear terms to be con-

stant for the design of a position controller. Corroborating with [11](ji1993study), these works have

observed that there were significant errors, especially while tracking sharp turns like corners. More-

over, in practical implementations, the models are often simplified and are compensated by the con-

trol algorithms implemented. However, even with a precise formulation of the dynamics model, real-

time model-based control of the Lagrangian dynamics model of parallel manipulators remains a chal-

lenge [16](kuo2014experimental).

Dasgupta et. al. [17](dasgupta1998closed) regard task-space description as natural for parallel ma-

nipulators and joint-space for serial manipulators. The initial attempts for a task-space description of La-

grangian dynamics models for an SRSPM are presented in [18, 19](geng1992dynamic, liu1993singularities);

a complete description is given only in [20](lebret1993dynamic). However, closed-form expressions of the

linear and angular velocity Jacobian matrices of the legs were not obtained in this work. General closed-

form dynamics expressions for the coefficient matrices in terms of the task-space variables was not given

until [21](dasgupta1999general). The work also describes the computational advantage of simulation us-

ing a smaller set of variables to describe the system. Hence, task-space is suitable over actuator-space

as the latter involves computation of the forward kinematic (FK) solutions at each iteration. Apart from

task-space, configuration and actuator-spaces are other frequent choices for the formulations of equations

of motion.

Parallel manipulators are prone to singularities within their workspaces called gain-type singularities

which are influenced by choice of the generalised coordinates selected. These gain-type singularities of

parallel manipulators, in turn, reflect in their dynamic behaviour. A detailed study on the effect of singu-

larities on various Lagrangian dynamics formulations is presented in [22](MURALIDHARAN2018403).

Therefore, the current work focusing on simulation methods, adopts the concept of safe working zone (SWZ)

detailed in [23](murali2019computation) and assumes that the manipulator is working within this region

for the entire duration of motion.

The advantages of choice of a redundant coordinate set for modelling constrained multi-body systems
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is studied in [24](ryan1990adams). A Newton-Euler framework utilising a highly redundant coordinate

formulation is presented in [25](franchi1995highly). The work illustrates a better computational perfor-

mance even without resorting to the development of any dedicated algorithm to exploit the sparse sys-

tem of equations generated with the selection of highly redundant coordinates. More recently, Masarati

et al. [26](masarati2014efficient) have offered a method to build a general-purpose multi-body analysis

software using redundant coordinates. Further, [27](fumagalli2009real) has demonstrated the real-time

computation capability of inverse dynamics of an 11 degree-of-freedom parallel manipulator exploiting

the choice of redundant coordinates.

The current work deals with a specific set of redundant coordinates to formulate the equations of mo-

tion of parallel manipulators using the Lagrangian framework. The objective of this paper is to study this

formulation called the extended-configuration-space modelling and understand its relative precedence in

the simulation of parallel manipulators as compared to the configuration, actuator and task-space dynam-

ics models. It is to be noted that the present method offers a computational advantage to systems with

lower degrees of freedom and whereas, for systems with a large number of degrees of freedom it is advan-

tageous to use recursive algorithms [6](saha1999dynamics). The main contributions of this paper can be

summarised as:

• The extended configuration-space modelling and its interchangeability between models

• A comparative study of the proposed model with other popular models

• Numerical studies comparing the accuracy and computational time of various models

• The formulation and simulation of dynamics of the 6-RSS manipulator using the proposed model

• All the codes necessary for the simulation in C++ and Mathematica R©11.2 are made available in

the project repository, https://github.com/akhilsathuluri/SRSPM dynamics

The rest of the paper is organised as follows: all the required notations are given in Section 2(sc:notation)

and the standard Lagrangian based dynamics formulation is illustrated in Section 3(sc:lagform). The

extended-configuration-space dynamics model is discussed in Section 4(sc:extconf). The simulation and

comparison of all the dynamics formulations is provided in Section 5(sc:sim). An example simulation

of the 6-RSS manipulator is given in Section 6(sc:rss). Finally, the conclusions and the future work are

presented in Section 7(sc:conc). The appendix contain details of implementation in C++ and Mathemat-

ica R©11.2.
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2. Basic definitions and notations

(sc:notation) The necessary set of assumptions and definitions are presented in the current section.

Parallel manipulators fall under the classification of constrained mechanical systems. The architecture of

parallel manipulators is characterised by their closed-loops and hence have both active, i.e., actuated and

passive joints. The condition imposing all the closed-loops to remain intact at all times, gives rise to the

loop-closure constraints, written as,

η(q) = 0, (eq:loopclosure) (1)

where q = [θ>,φ>]>, and θ ∈ Rn, φ ∈ Rm are the n active and m passive variables representing the

respective joint angles of the manipulator. Since the loop-closure equations do not explicitly depend on

time, they are scleronomic in nature [28](udwadia2007analytical) and derivative of Eq. (1) with respect to

time can be written as,

dη

dt
= Jηqq̇ = 0, where Jηq =

∂η

∂q
. (2)

Expanding Eq. (2) in terms of the active and passive joint variables is given as:

Jηθθ̇ + Jηφφ̇ = 0, where Jηθ =
∂η

∂θ
, Jηφ =

∂η

∂φ
. (3)

φ̇ = Jφθθ̇, where Jφθ = −J−1ηφJηθ (4)

The matrices Jηq, Jηφ are called as the configuration Jacobian matrix and the constraint Jacobian matrix.

Numerical evaluation of these matrices is critical for the simulation of the equations of motion of the

system. The following are the key assumptions under which the above formulation remains valid:

1. All the links of the manipulator are assumed to be rigid,

2. There is no friction, and all the joints are ideal,

3. The mass distribution of all the links is uniform.

2.1. Semi-regular Stewart platform manipulator (SRSPM)

The Gough-Stewart or the Stewart platform manipulator is a six degree-of-freedom parallel manip-

ulator. Its construction involves a fixed platform connected to six linear actuators, also called legs, via

universal or spherical joints. A moving platform is attached to the other ends of the linear actuators

via spherical joints, as shown in Fig. ??(fig:srspm). Since its introduction in [29](stewart1965platform),

it has attracted a large amount of research on the topics of kinematics, dynamics and control. The in-
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Figure 1: Architecture of a Semi-Regular Stewart Platform Manipulator

terest in this particular manipulator comes from its wide range of applications in automotive simula-

tors [30, 31](freeman1995iowa, park2001development), machine tools [20](lebret1993dynamic), flight

simulators [32](pradipta2013development) etc. The length of the legs (li) constitute the active variables (θ)

and the configuration of the spherical joints attached to the rigid platform form the passive variables (φ).

Whereas position and the orientation of the moving platform (end-effector) together constitute the task-

space variable set (x).

3. Lagrangian dynamics formulations of parallel manipulators

(sc:lagform) The current section provides brief descriptions of various dynamics formulations within

the Lagrangian framework.

3.1. Configuration-space formulation

(sc:configspace) The set of actuated and passive joint variables together form the configuration-space

or the joint-space of the manipulator. The equations of motion of parallel manipulators described in the

configuration space can be derived using the constrained Lagrangian formulation and can be found in

textbooks such as [33](ghosal2006robotics). The resulting equation of motion is of the form:

(eq:dynconfig)Mq̈ +Cq̇ +G = Qnc + J>ηqλ, (5)

where, M is the generalised mass matrix, C is the combination of centripetal and Coriolis forces, G is

the vector of gravitational and other potential forces, Qnc is the vector of external forces, and J>ηqλ is the

vector of constraint forces arising out of the loop-closure constraints Eq. (1). In the case of an SRSPM,

the active variables representing the leg-lengths (θ) and the passive variables describing the configuration

of the spherical joints at the fixed platform (φ), together form the configuration-space of the manipulator

as shown in the Fig. ??. In this case, the Lagrangian multipliers λ can be obtained by considering the

Figure 2: Configuration-space of the SRSPM

derivative of Eq. (2) with respect to time as,

Jηqq̈ + J̇ηqq̇ = 0. (6)
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Substituting for q̈ from Eq. 5, λ vector is obtained as:

λ = −A−1
(
J̇ηqq̇ + JηqM

−1f
)
, where (7)

A = JηqM
−1J>ηq, (8)

f = Qnc −Cq̇ −G. (9)

Using Eq. (9), the forward dynamics model derived is of the form:

q̈ =M−1f −M−1J>ηqA
−1
(
J̇ηqq̇ + JηqM

−1f
)
. (10)

For an in-depth discussion on the ranks of the Jacobian and the A matrices and their effects on the dy-

namic behavior of parallel manipulators, refer to [22](MURALIDHARAN2018403). The necessary set

of constraint equations are obtained by imposing the conditions of the rigidity of the moving platform

adopted from [34](bandyopadhyay2006geometric), as explained below:

1. The initial six equations are derived by imposing a constraint on the relative distances between the

vertices.

2. Rigid triangles are formed by placing a constraint on the distance between three consecutive vertices

giving three more equations.

3. Ensuring all the planes of the above-formed triangles to be parallel, i.e., all the triangles are in the

same plane result in three additional equations.

Together, they impose 12 constraint equations as functions of 18 variables, i.e., 6 active and 12 passive joint

angle variables. For the complete formulation of the configuration-space dynamics model of SRSPM, refer

to [35](anwar2012trajectory). The resulting coefficientsM andC are 18×18 matrices, and the equations

of motion are a set of 18 ordinary differential equations.

3.2. Actuator-space formulation

(sc:actspace) In the actuator-space formulation the number of generalised coordinates is exactly equal

Figure 3: Actuator-space of the SRSPM

to the of degrees of freedom of the system. Therefore, the equations of motion in these coordinates does

not involve the constraint Lagrangian term. Using the fact that constraint forces do not do any work, the

actuator-space dynamics model can be derived by eliminating the Lagrangian multipliers, λ.

(
J>ηqλ

)>
q̇ = λ>Jηqq̇ = 0. (11)
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Further, from the equation Eq. (3),

q̇ = Jqθθ̇, where Jqθ = [Jφθ I6×6]. (12)

Using the Eq. (12) defining the mapping between two variable sets q̇ and θ̇, the configuration-space system

can be transformed into actuator-space formulation. This method is also referred to as the embedded

Lagrangian technique [AS: find citation]. The resulting equations of motion are of the form,

Mθθ̈ +Cθθ̇ +Gθ = Q
nc
a , (13)

Mθ, Cθ and Gθ are analogues of the coefficient matrices derived in Eq. 5 for the configuration-space

dynamics model. Since there are no closed-form solutions to the forward kinematics (FK) problem, a

direct formulation of dynamics model in terms of the actuator-space variables is not feasible. Therefore,

the model is formulated in a higher dimensional space, i.e., the configuration-space and is mapped to

the actuator-space, resulting in an equivalent unconstrained dynamic system. The complete derivation of

the actuator-space dynamics mode can be found in [36, 22, 37](nasa2011, MURALIDHARAN2018403,

agarwal2016dynamic). In case of the SRSPM, this transformation results in the change of coordinates

from 18 variables of configuration-space to 6 dimensional actuator-space. It should be noted that the

formulation is dependent on the existence of the inverse of Jηφ matrix. The loss in rank of constraint

Jacobian matrix is termed as the gain-type singularity which affects the mapping between the dynamics

models.

Further, the mapping requires the computation of the passive joint variable values which involves

solving the FK problem at every iteration of the simulation. Evaluating of the solutions to the FK problem

is computationally intensive. To overcome this issue a Newton-Raphson based root-tracking algorithm is

implemented in an intermediary step. The major advantage of this step is the ability to evaluate the values

of passive joint angle variables using the constraint equations up to a required accuracy level.

3.3. Task-space formulation

(sc:taskspace) The task-space or the workspace variables describe the output space of a manipulator

Figure 4: Task-space of the SRSPM

and are represented by x as shown in Fig. ??. The task-space generally consists of the Cartesian coordi-

nates, {x, y, z} and the Rodrigues’ parameters, {c1, c2, c3} of the geometric centre, representing position

and the orientation of the moving platform. The number of task-space variables are the same as the num-

ber of degrees of freedom and therefore there is no constraint term in the equations of motion and have a
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form similar to the actuator-space model:

Mxẍ+Cxẋ+Gx = Qnc
x , (14)

where Mx, Cx, Gx are the coefficient matrices of the task-space dynamics. Multiple ways to arrive at

the Eq. (14) are explained below.

3.3.1. Direct task-space formulation

(sc:method1) The expressions of joint-space variables can be derived in terms of the task-space

variables by solving the inverse kinematics (IK) problem of the manipulator. Therefore, linear and angular

velocity Jacobian matrices can now be derived completely in terms of the task-space variables. A major

drawback in this method is the resulting sizeable expressions of the derived Jacobian matrices. Moreover,

it is computationally expensive to derive a closed-form expression for the Cx matrix using,

Cij =
1

2

18∑
k=1

(
∂Mij

∂qk
+
∂Mik

∂qj
− ∂Mkj

∂qi

)
q̇k. (15)

Hence, the Cx is derived numerically from the closed-form expressions of the partial derivatives of the

mass matrix,Mx.

3.3.2. Indirect task-space formulation

(sc:method2) A much wiser way is to compute the coefficient matrices numerically at each step which

involves computing the joint-space variables at each iteration of the simulation. The relation between

configuration and task-space variables can be derived using the IK equations. Consider the time derivative

of these IK equations,

q̇ = Jqxẋ, where Jqx =
∂fIK
∂x

(16)

and q = fIK(x), (17)

where ẋ are the task-space variables and fIK represent the IK solutions. The expressions of the Jacobian

matrix can be further simplified by splitting the configuration-space variables into active and passive joint

coordinates which result in the following decomposition,

Jqx = JqθJθx (18)
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Upon observation, it can be seen that using the decomposition in Eq. (18) is equivalent to mapping the

actuator-space dynamics model to the task-space model using Jθx Jacobian matrix. Therefore using the

derived actuator-space model as the base model used in transformation to the task-space model leads to

the evaluation of a smaller 6 × 6 matrix, Jθx as opposed to the larger 18 × 18 matrix, Jqx. Resulting

coefficient matrices of the task-space dynamics model is,

Mx = J>θxMθJθx

Cx = J>θx(CθJθx +MθJ̇θx)

Gx = J>θxGθJθx

Qnc
θ = J>θxQ

nc
x

This process is similar to the mapping done between configuration-space and actuator-space vari-

ables. Since most of the matrices are computed numerically at run-time, the dynamics model in Sec-

tion 3.3.2(sc:method2) is computationally faster than the model described in Section 3.3.1(sc:method1)

and all the other methods described above.

4. Extended-configuration-space formulation

(sc:extconf) As described in the introduction, there are several advantages to the usage of a redundant

coordinate set. However, in general, the extra variables would mean enforcing additional constraints on the

equations of motion leading to an increased complexity of the problem and computation of the constraint

Lagrangian term. Consider an n degrees of freedom system described with m generalised coordinates.

In such a case, an additional m − n constraints are to be imposed on the system to completely determine

its configuration. Even though through intelligent choice of variables it is possible to generate sparse

coefficient matrices, it invariably results in a larger number of equations to be solved, increasing the size

of the problem.

The choice of extended-configuration-space variables is a way to exploit the sparseness in the matrices

while keeping the size of the problem small. Observing the earlier formulations in Sections 3.1(sc:configspace), 3.2(sc:actspace), 3.3(sc:taskspace),

it is apparent that each method has its relative advantages and disadvantages. The primary computational

burden in the configuration-space formulation is due to the calculation of velocity Jacobian matrices of

the moving platform, whereas in the task-space it is due to the calculation of Jacobian matrices cor-

respinding to the prismatic links. Description of the legs in the task-space model and the moving platform
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in the configuration-space model result in matrices with sizeable symbolic expressions which consume

a significant amount of the computational time for evaluation. The set of generalised coordinates in the

extended-configuration-space formulation represent each body of the system in its natural coordinates,

i.e., describe all the elements with their associated variables as shown in Fig. 5(fig:extspace). Such a de-

scription would avoid posing one set of variables in terms of others and thereby reducing the complexity

of the intermediate matrices involved.

As illustrated in the derivation of the actuator and task-space models in Section3.2 and 3.3, a dynamics

model formulated in a higher dimension allows the flexibility of transformation between various variable

sets. A distinct advantage of this specific choice of redundant variables means that the formulated model

can be mapped to both actuator or task-space dynamics models. Therefore unlike [27](fumagalli2009real),

the model not only remains sparse but the size of the problem also remains small, significantly reducing

the computational time. Further, by the appropriate choice of variables to be mapped to, the constraint

equations can be eliminated giving rise to the unconstrained form of the equations of motion.

4.1. Example formulation in SRSPM

(fig:extspace)

Figure 5: Extended-configuration-space of the SRSPM

As mentioned earlier, in the extended-configuration-space, every element of the manipulator is de-

scribed in its natural coordinates. For example, in the case of an SRSPM, it is easy to describe the top

platform in the task-space coordinates whereas the legs in the joint-space. Following from this argument

the set of active, passive and task-space variables together constitute the extended-configuration-space of

the SRSPM manipulator.

qe = [x>,θ>,φ>,ψ>]>.

This particular choice of variables also result in a significant reduction of complexity in the formulation

of the constraint equations. In the case of an SRSPM the constraints may be formulated by equating the

positions of the vertices of the moving platform as traversed through each individual serial chain present

along the legs,

η(qe) = 0x+Rtpali − ai = 0, where i = 1, 2, . . . 6, (19)

(20)

and x is the position of the geometric centre {x, y, z} and Rtp is the rotation matrix corresponding to the
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orientation of the moving platform; ali, ai are the vertices of the moving platform described in the local

and the global frames respectively. Such a formulation of constraint equations drastically simplifies the

expressions corresponding the linear and angular velocity Jacobian matrices resulting in sparse coefficient

matrices. Since there is no need to find the relations between different sets of variables (using FK or IK

relations), it is easy to model the dynamics of a system using this method. Moreover, the derivation of

the extended-configuration-space dynamics model is similar to deriving the configuration-space model.

Hence, the form of the resulting equations of motion are equivalent to Eq. (5),

M (qe)q̈e +C(qe, q̇e)q̇e +G(qe) = Q
nc
e + J>ηqeλ, (21)

The resulting dynamics model consists of a set of 24 coupled non-linear differential equations, with the

coefficient matrices as functions of the extended-configuration-space variables and their first-order time

derivatives. However, note that this set of generalised coordinates do not convey any physical meaning as

the prismatic joints are the only controllable variables.

In the case of an SRSPM, the 24 dimensional formulation enables multiple options to map the formu-

lated model, either to actuator-space or to the task-space, both of which are only 6 dimensional. Such a

mapping is similar to the transformation from 18 dimensional configuration-space to the actuator-space

model of 6 dimensions. Further, mapping of the system is not possible to the configuration-space model,

as the Jacobian matrix, Jηx is rectangular and hence non-invertible. Therefore, the particular choice

of extended-configuration-space provides the versatility of choosing a sub-space to be mapped to while

retaining the sparseness of the matrices.

4.2. Extended configuration-space model mapped to task-space model

The works [20, 38](lebret1993dynamic, kim1998high) describe the importance of task-space dynamics

in formulating controllers for various applications like machining and high-speed tracking. Further, task-

space dynamics is preferred as it involves solving the simpler IK problem over the FK problem. Lee

et. al. [14](lee2003position), describe the development of an IK based controller utilising the task-space

dynamics model. The tasks-space dynamics model can be derived from the extended-configuration-space

through the following mapping,

{x,θ,φ} 7→ {x}. (22)
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Consider the derivative of the constraint equations in Eq. (20) with respect to time expanding it in terms

joint and task-space coordinates.

q̇ = −J−1ηqJηxẋ, (23)

where Jηx =
∂η

∂x
and Jηq =

∂η

∂q
. (24)

From Eq. (24), it is apparent that the above mapping fails when Jηq is not a full ranked matrix. The

condition where the configuration Jacobian matrix, Jηq is non-invertible is referred to as a configuration-

space singularity, elaborated in [22]. The extended-configuration-space mapped to task-space model is

abbreviated as extended-to-task-space model.

4.3. Extended configuration-space model mapped to actuator-space model

Despite the task-space dynamics model small and computationally faster, the actuator-space model

is generally preferred for applications involving control and simulation of systems. The implementation

of task-space dynamics requires the use of an external sensor to continuously identify the position and

orientation of the moving platform. The actuated joints are controlled in the actuator-space dynamics

model and hence their states are directly available. Therefore, the actuator-space is relevant in several

practical applications as presented in [12, 39](li1997modeling, su2004disturbance).

{x,θ,φ} 7→ {θ}. (25)

The extended-configuration-space model provides a straightforward path for the formulation of an actuator-

space model via transformation of the generalised coordinates. Let the set of task-space and passive joint

angle variables together be denoted as,

qx = [x>,φ>]>.

Consider the derivative of the constraint equations, Eq. (20), with respect to time,

q̇ = −Jηqx−1Jηθθ̇, where Jηθ =
∂η

∂θ
and Jηqx =

∂η

∂qx

The Jacobian matrix Jηqx is responsible for the existance of the mapping and needs to be further studied

to understand various conditions of singularity. Singularities play a significant role in determining the

course of simulation of parallel manipulators. The coefficient matrices of the mapped models discussed

in Sections 3.2(sc:actspace) and 3.3(sc:taskspace) are computed numerically at runtime via Jacobian ma-
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trices. Therefore, accuracy and computational speed are of major concern for dynamics models obtained

through the transformation of coordinates. The extended-configuration-space mapped to actuator-space

model is abbreviated as extended-to-actuator-space model.

5. Simulation and comparison between formulations

(sc:sim) This section presents the numerical simulation studies of the dynamics models using the

SRSPM. As a convention, the local axis of the moving platform and the global axis fixed at its centre do

not have any relative rotation between them. The moving-platform is initially at rest, i.e., q̇(0) = 0 with

its geometric centre at a height, z = 1.1 m. From the initial condition, the moving platform is let to fall

freely under the influence of gravity. The Appendix A(app:a) contains details of the physical parameters

of SRSPM used by the simulation models. The dynamics models are formulated and simulated in both

Mathematica R©11.2 and C++. The simulations are allowed to run for a duration of 1 second on an AMD

Ryzen 7 1800X, eight-core CPU1 with 16 GB RAM and a clock speed of 3.6 GHz installed with Ubuntu

18.04.1 LTS.

5.1. Comparison of coefficient matrices

The sizes2 of the coefficient matrices reflect the density of the expressions contained within which has a

direct implication on its compilation and execution time. The symbolic expressions for the coefficients are

initially derived in Mathematica R©11.2. Later, the expressions are converted into C++ compatible code.

Refer to the Appendix C(app:sim) for details. The sizes of the coefficient matrices M and C derived

for the configuration-space model are given in Table 1. These coefficient matrices are functions of both

passive and active joint variables.

Table 1: Size of the coefficient matrices used in configuration-space dynamics model of the manipulator

Size (KB ×103)
Expression C++ Mathematica

M 0.900 13.369
C 103.4 748.207

The matrices Mθ and Cθ cannot be obtained in closed-form as they involve expensive symbolic in-

verse computations. Therefore are computed numerically from the M and C matrices at each time step.

1Note that only one core is used for simulating the free-fall scenario.
2Corresponds to the size of the expression computed using ByteCount function in Mathematica R©11.2 or the size of the

file containing the expression in C++
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An in-depth comparison of their relative time complexities can be found in [40](nag2019comparative).

The sizes of relevant matrices used in the simulation of the actuator-space model are as shown in Ta-

ble. 2(table:acttime).

Table 2: Size of the coefficient matrices used in dynamics modelled in the actuator-space of the manipulator

Size (KB ×103)
Expression C++ Mathematica
Jηφ 0.027 0.246
˙Jηφ 0.181 748.207
Jηθ 0.015 0.143
˙Jηθ 0.083 0.802

(table:acttime)

The inability in computing a closed-form expression for the Cx matrix using the method described in

Section 3.3.1(sc:method1) becomes apparent from the sizes of the mass matrix and its partial derivatives

given in Table 3(table:tasksize).

Table 3: size of the coefficient matrices used in dynamics modelled in the task-space of the manipulator

Expression Size (KB ×103)
M 369.044

All the partial derivatives ofM 18531.400

From Table 3(table:tasksize) and 1(table:configsize), it is evident that the latter has matrices of smaller

size. Since the method given in Section 3.3.2(sc:method2) involves the numerical computation of the

coefficient matrices from the coefficients of the actuator-space model, it is more practical to use this

method. Further, the computation of solutions to the IK problem is simpler than that of the FK. Hence

task-space models are easier to formulate and implement as compared to other formulations. Table 4(ta-

ble:extconfsize) contains the sizes of the coefficient matrices of the extended-configuration-space model.

Table 4: Sizes of the coefficient matrices of extended-to-task-space dynamics model

Size (KB)
Expression C++ Mathematica

M 4.100 35.515
C 15.500 100.984

From Table 1(table:configsize) and 4(table:extconfsize) the striking difference in the sizes of the co-

efficients in configuration-space and the extended-configuration-space is apparent. The sizes of the corre-
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sponding matrices differ at least by a magnitude of 103. This can be attributed to the sparsity of elements in

the higher dimensionalM andC matrices and are visualised using a matrix sparsity plot given in Fig. 6.

Figure 6: Visualising the sparsity of M and C matrices in the extended-configuration space vs. configuration-space formula-
tions

In Fig. 6, cells with “ ” denote the presence of symbols, “ ” denote the presence of constants and the

“ ” cells denote zero valued elements.

5.2. Comparison of computational time

As a pre-simulation step, all the formulated models are rewritten in state-space representation,

q̇ = f(q,u),

where q and u are variables correspond to states and actions of the system.

Table 5: Computational time taken for the free-fall simulation in Mathematica R©11.2

Formulation Real-time (s) Simulation time (s) Simulation time/Real-time (s)
Configuration-space 1.000 0.705 0.705
Actuator-space 0.480 0.337 0.717
Task-space 1.000 0.469 0.469
Extended-to-task-space 1.000 0.289 0.289
Extended-to-actuator-space 0.470 0.199 0.423

In Mathematica R©11.2 the equations of motion are integrated numerically with an Adams solver using

the inbuilt NDSolve function, with the parameter, AccuracyGoal, set to 10−15. More information

regarding the simulation set up is given in Appendix C(app:sim). The time taken for free-fall simulation

in each case is as shown in Table 5(time:mathematica).

(a) t = 0 s (b) t = 0.48 s

(motion:act)

Figure 7: Motion of the manipulator when simulated in the actuator-space

As expected, the initial conditions, accuracy goal and the choice of numerical integrator have a sig-

nificant effect on the simulation time and accuracy of the solutions obtained. During the simulation of

actuator-space dynamics model, root-tracker fails to compute the FK solutions at around time t = 0.48 sec-

onds, owing to the ill-conditioning of the Jηφ matrix corresponding to the achieved singular pose shown
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in Fig. 7(motion:act). Therefore, the simulation terminates at t = 0.48 seconds, whereas the other models

are simulated for the entire duration of 1 second without encountering any singularity.

(a) t = 0 s (b) t = 0.4 s (c) t = 0.7 s

(motion:config)

Figure 8: Motion of the manipulator when simulated in the configuration-space

On the other hand, with the configuration-space model, at time t = 0.48 seconds, further motion is

solely dependent on the solver, and the direction of movement cannot be precisely predicted. As shown

in Fig. 8(motion:config). It is observed that the moving platform changes its direction upon reaching

the singular pose. However, in the task-space simulation, the system does not encounter any singular-

ity at time t = 0.48 seconds and proceeds usually, passing through the fixed platform, as depicted in

Fig. 9(motion:etask). Detailed analysis of the behaviour of dynamics models at a singularity is elaborated

in [22](MURALIDHARAN2018403).

(a) t = 0 s (b) t = 0.4 s (c) t = 0.7 s

(motion:etask)

Figure 9: Motion of the manipulator when simulated in the extended-configuration-space

Mathematica R©11.2 uses several optimisations beyond the control of the end-user and hence cannot

be used as a benchmark for comparing different models. Therefore, all the dynamics models are ported

to C++ benchmark them. The equations of motion rewritten in the state-space form are integrated using

an explicit Runge-Kutta-Fehlberg method, an excellent general-purpose integrator. The duration of t =

0 seconds to t = 1 second is discretised into 100 equally spaced time-steps. For the actuator-space

simulation, the accuracy goal of the custom Newton-Raphson based root-tracker is implemented, and the

accuracy goal of the solutions is set to 10−15. The details of the code and implementation can be found in

the Github page of the project. The average time over 1000 runs per simulation is recorded and presented

in Table 6(time:c++). Details regarding the compiler, compilation times of the codes, solvers libraries used

can be found in the Appendix C(app:sim) [AS: These are from my laptop. Need to rerun codes on the lap

PC]

Table 6: Computational time taken for the free-fall simulation in C++

Formulation Real-time (s) Simulation time (s) Simulation time/Real-time (s)
Configuration-space 1.000 0.794 0.794
Actuator-space 0.480 0.777 1.619
Task-space 1.000 0.721 0.721
Extended-to-task-space 1.000 0.042 0.042
Extended-to-actuator-space 0.480 0.069 0.143
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It is apparent from Table 6(time:c++) that the extended-to-task-space formulation takes the least amount

of computational time. This reinforces the observations of the authors in [41](leger2007selection) that dy-

namics models with smaller coefficient matrices would not necessarily lead to faster simulation. In other

words, even though the coefficient matrices in configuration-space are of size (18 × 18) as compared to

extended-configuration-space, (24×24) size matrices, the later has a significantly lower computation time.

The box plot corresponding to the data in Table 6(time:c++) is shown in Fig. 10(fig:boxplot).

(fig:boxplot)

Figure 10: Box plot corresponding to the execution times of various dynamics formulations

The following are the measures taken to prevent evaluation of redundant code, ensure fast computation,

code modularisation.

1. Compilation of the entire 18 × 18 dimensional C matrix is not feasible (with the computer used),

and hence each element of the matrix is extracted as a separate file and is compiled independently.

All the individual elements are evaluated, and theC matrix is reconstructed directly during runtime.

2. The coefficient matrices are functions of repetitive sine and cosine of the generalised coordinates. It

is advised to pre-compute the values of the trigonometric functions to obtain a significant reduction

in the computational time.

3. For the computation of the IK solutions, a cascaded substitution is done to prevent recomputing

repetitive expressions.

Cascaded substitution for computing the IK solutions
1: The link lengths, l given the task-space variable data, x are computed in the first step.
2: The values of ψ given the link lengths, l, and the task space data, x are computed next.
3: Finally, the variables φ are evaluated using x and ψ values calculated in the above steps.

4. The matrix inversion operation is usually computationally more expensive than solving a linear

equation. The same is true for all the inversions of the Jacobians and for computing the second-order

derivatives of the generalised coordinates, q̈e. However, the usage of the LinearSolve function

in Mathematica R©11.2 instead of Inverse function has not shown any significant improvement

in performance. The same observation remains valid for the simulations performed in C++. Factors

like the size of the system, libraries and compilers used might affect the computational time.

5.3. Comparison of model accuracy

(sc:checks) Dynamical simulations are prone to deviate from the systems’ actual evolution due

to incorrect modelling, truncation errors, approximations in the numerical method used etc. Muralid-
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haran et. al. [22](MURALIDHARAN2018403) have proposed numerical error measures to validate the

mathematical consistency of the formulated dynamics model of a parallel manipulator by considering the

norm of zeroth, first and second-order forms of the constraint equations. Instead of the norm, the absolute

maximum of the error vector is used in this paper. The error measures generated using the data obtained

from the free-fall simulation of the configuration-space model are described in this section.

1. Zeroth-order check on the loop-closure constraint (e1) :

This measure quantifies the deviation from the loop-closure equations, Eq. (1) with time,

e1 = max(|η(q)|). (26)

Figure 11: Absolute maximum error in loop-closure equations with time as given in Eq. (26)

2. First-order check on loop-closure constraint (e2) :

This verifies the consistency of the joint velocities with the loop-closure constraint in its Pfaffian

form. Deviation from the first order derivative of the loop-closure constraints with respect to time,

e2 = max(|Jηqq̇|). (27)

Figure 12: Absolute maximum of first order loop-closure equations with time as given in Eq. (27)

3. Second-order check on the loop-closure constraint (e3) :

The consistency of the generalised accelerations with the loop-closure constraint is verified by its

second order derivative with respect to time.

e3 = max(|Jηqq̈ + J̇ηqq̇|). (28)

Figure 13: Absolute maximum of second order loop-closure equations with time as given in Eq. (28)

4. Conservation of energy check (en) :

The total mechanical energy of the manipulator, E(t) is given as,

E(t) = T (t) + V (t), (29)
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where T (t) and V (t) are values of the kinetic and potential energy of the system at time t. The total

energy of the system is expected to remain constant during the free-fall simulation. The percentage

change in energy of the system is checked and is given as:

δE =
E(t)− E(0)

E(0)
× 100,

where E(0) is the total mechanical energy of the system at time t = 0.

Figure 14: Percentage change in the total mechanical energy of the system with time as given in Eq. (29)

Similarly, all the dynamics models are validated for mathematical consistency, and the magnitude of

all the errors are tabulated in Table 7(table:errortable).

Table 7: Order of the magnitude of various error measures for different formulations

Formulation e1 e2 e3 en
Configuration-space 10−7 10−6 10−4 10−8

Actuator-space 10−15 10−15 10−13 10−7

Task-space 10−15 10−14 10−13 10−6

Extended-mapped-to-task-space 10−16 10−21 10−20 10−8

Extended-mapped-to-actuator-space 10−16 10−15 10−13 10−7

From the values presented in 7(table:errortable), it is apparent that the order of error e1 in the configuration-

space model is 108 times that of the actuator-space model. The imposition of the loop-closure equations

via root-tracker results in the generation of errors of smaller magnitude in actuator-space. However, on

the other hand, the extended-to-task-space formulation involves the computation of closed-form expres-

sions corresponding to the IK solutions, which result in lower magnitudes of errors as shown in 7(ta-

ble:errortable). The error e1 is of the order 10−16 in the extended-to-task-space model as compared to

10−15 in the actuator-space. Hence the extended-configuration-space formulation is not only faster but also

more precise than the conventional formulations. Therefore to obtain the best performance, the extended-

to-task-space model should be chosen, and the joint torque requirements can be mapped to the task-space

generalised forces.

5.4. A note on the mathematical consistency checks

The checks mentioned above ensure only the mathematically consistency of the formulations and

do not necessarily validate the system modelled to being the actual system. Familiar sources for such

discrepancy are a mismatch in the inertia or mass of elements modelled versus the physical system. These

checks also fail to identify any representation errors. Say, if the local frame of the moving platform of the
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SRSPM is defined with a constant offset in its orientation from the global frame, in such cases, even if

the simulation set-up is not consistent with the physical representation, the model remains mathematically

consistent. In other words, modelling errors committed before the formulation of mass matrix continue

being mathematically consistent and cannot be prevented by the described checks.

6. Dynamics formulation and simulation of 6-RSS manipulator

(sc:rss) This section demonstrates the utility of having a fast and accurate Lagrangian dynamics

model. The 6-RSS manipulator is a 6 degree-of-freedom parallel robot similar to the SRSPM. Its architec-

ture is shown in Fig. 15(fig:rssman). Since the construction of moving and fixed platforms of the SRSPM

(fig:rssman)

Figure 15: The 6-RSS manipulator

and 6-RSS manipulator are identical, the axes conventions remain the same. A rotary joint is present at

each of the vertices of the fixed platform with its central axis tangential to the circumcircle of the fixed

platform. The x-axis is aligned with the rotary joint axis and z-axis along the links’ length. Similar to the

SRSPM, the set of joint and task-space variables together constitute the extended-configuration-space of

the 6-RSS manipulator.

qe = [x>,φ>,θ>]>,

where θ, φ and x are the active, passive and task-space variables respectively. A mathematical model is

developed following the process as provided in Section 4(sc:extconf). The details of the numerical checks

described in Section 5.3(sc:checks) are given in Fig. 17(rss:check). The forward dynamics for 0.6 sec-

onds free-fall simulation of the top platform implemented in C++ is completed in 0.546 seconds by the

extended-to-task-space dynamics model.

Figure 16: Torque profile for the heave motion requirement of the moving platform

This example is presented to illustrate the role of the dynamics model in decision making of design

specifications. The moving platform of the manipulator is required to perform a prescribed heave mo-

tion. Inverse dynamics analysis is performed to compute the torque requirements to select the compatible

motors.
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(a) Absolute maximum error in loop-closure equations with time (b) Absolute maximum of first order loop-closure equations with time

(c) Absolute maximum of first order loop-closure equations with time (d) Percentage change in the total mechanical energy of the system with time
as given in Eq.( 29)

Figure 17: Validation of the extended-to-actuator-space mathematical model

6.1. Inverse dynamics simulation for a required heave motion

The moving platform is required to produce a heave motion with constraints on its peak acceleration

as 0.8g m/s2 in the z direction, with the following terminal conditions,

xi = [0, 0, 0.3, 0, 0, 0]> x′i = [0, 0, 0, 0, 0, 0]>

xf = [0, 0, 0.4, 0, 0, 0]> x′f = [0, 0, 0, 0, 0, 0]>,

where xi,xf are the initial and final poses and ẋi, ẋf are the initial and final velocities of the moving

platform given in task-space coordinates. The extended-to-actuator-space model is used for the inverse

dynamics (ID) simulations to compute the motor torques. Since the requirements are the torques of the

motors, the model is mapped to actuator-space; the same formulation can also be mapped to task-space if

required. The manipulator takes around 0.168 s to complete the ID simulation for a real-time of 0.3 s. The

obtained torque profile is shown in Fig. ??(fig:heave). The manipulator parameters used for the simulation

are given in Appendix A(app:a). The torque profile shows that for the achieved configurations during the

motion, the motor always supplies the positive torque. Since the initial and final poses have a zero velocity

constraint, the manipulator decelerates as it reaches these positions and hence a peak is observed in the

torque profile. A small segment of the manipulator moving up is shown in the motion profile given in

Fig. 18(motionrss). The Fig. ??(fig:heave) establishes theoretical bounds on the motor torque requirement

for the assumed task providing essential information in making design decisions.

[AS: Impose a sine wave corresponding to the path and then put manipulator on it to illustrate the

heave motion]

(a) t = 0.1 s (b) t = 0.2 s (c) t = 0.3 s

Figure 18: Configurations of the manipulator during heave motion

7. Conclusion

(sc:conc) A detailed study of the extended-configuration-space dynamics model is presented in this

paper. The versatility of the model through transformation between dynamic models is demonstrated. The
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idea of exploiting a sparse system while keeping the size of the problem small is also illustrated. Numerical

studies are presented to compare the proposed model with-space, actuator-space and task-space models.

The extended-configuration-space models are not only computationally efficient but also accurate among

all the models.

Fast and accurate Lagrangian dynamics models are crucial for designing complex non-linear con-

trollers. Especially, fast dynamics formulations are essential in high-frequency applications. Moreover,

the model is used for deciding design specification for a prescribed heave motion of the 6-RSS manip-

ulator. The proposed dynamics model opens several possibilities in design optimisation with dynamics

considerations and real-time model predictive control of parallel manipulators.

8. Acknowledgements

[AS: TBD]

Appendix A. Physical parameters of the manipulators

(app:a)

Table A.8: Parameters of the SRSPM used to solve the FK problem

Parameter Symbol Value Unit

Circumradius of the base platform rb 1 m
Circumradius of the moving platform rt 0.5803 m
Angular spacing between the adjacent γb 0.2985 rad
pair of legs of the fixed platform
Angular spacing between the adjacent γt 0.6573 rad
pair of legs of the moving platform
Length of the sliding link of the prismatic joint lbi, i = (1, . . . , 6) 0.5 m
Length of the fixed link of the prismatic joint lai, i = (1, . . . , 6) 1.5 m

Appendix B. Numerical verification of various dynamics models

(app:checks)

Appendix B.1. Actuator-space model verification

The errors corresponding to the verification of the mathematical dynamics model are presented in Fig. B.19(act:check)
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Table A.9: Mechanical parameters of the 6-RSS manipulator used in the simulation of the dynamics model

Parameter Value

rb 1 (m)
rt 0.6 (m)
γb 0.8080 (rad)
γt 0.4040 (rad)
Itpxx 1.1717 (kgm2)
Itpyy 1.1717 (kgm2)
Itpzz 2.3431 (kgm2)
Ilxx 0.0283 (kgm2)
Ilyy 0.0283 (kgm2)
Ilzz 6.325×10−6 (kgm2)
Irxx 0.1764 (kgm2)
Iryy 0.1764 (kgm2)
Irzz 5.400×10−6(kgm2)
mp 200.2033 (kg)
mli, i = (1, . . . , 6) 0.5060 (kg)
mri, i = (1, . . . , 6) 0.4320 (kg)
lli, i = (1, . . . , 6) 0.8200 (m)
lri, i = (1, . . . , 6) 0.7000 (m)

(tab:rssmanipulator)

(a) Absolute maximum error in loop-closure equations with time (b) Absolute maximum of first order loop-closure equations with time

(c) Absolute maximum of first order loop-closure equations with time (d) Percentage change in the total mechanical energy of the system with time
as given in Eq.( 29)

Figure B.19: Validation of the actuator-space dynamics model

Appendix B.2. Task-space model verification

The errors corresponding to the verification of the mathematical dynamics model are presented in Fig. B.20(task:check)

(a) Absolute maximum error in loop-closure equations with time (b) Absolute maximum of first order loop-closure equations with time

(c) Absolute maximum of first order loop-closure equations with time (d) Percentage change in the total mechanical energy of the system with time
as given in Eq.( 29)

Figure B.20: Validation of the task-space dynamics model

Appendix B.3. Extended-configuration mapped to task-space model verification

The errors corresponding to the verification of the mathematical dynamics model are presented in Fig. B.21(exttask:check)
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(a) Absolute maximum error in loop-closure equations with time (b) Absolute maximum of first order loop-closure equations with time

(c) Absolute maximum of first order loop-closure equations with time (d) Percentage change in the total mechanical energy of the system with time
as given in Eq.( 29)

Figure B.21: Validation of the extended-to-task-space dynamics model

Appendix B.4. Extended-configuration mapped to actuator-space model verification

The errors corresponding to the verification of the mathematical dynamics model are presented in Fig. B.22(extact:check)

(a) Absolute maximum error in loop-closure equations with time (b) Absolute maximum of first order loop-closure equations with time

(c) Absolute maximum of first order loop-closure equations with time (d) Percentage change in the total mechanical energy of the system with time
as given in Eq.( 29)

Figure B.22: Validation of the extended-to-actuator-space dynamics model

Appendix C. Additional information for execution of simulations

(app:sim)

qe(0) = [0, 0, 1.1, 0, 0, 0,−0.17618033875594355,−0.2667245792909399, 0.42390218334416085, 0.42390218334416097,−0.2667245792909397, −0.1761803387559433, 0.39064841061634575, 0.33709521577064094, −0.05006177387374231, 0.05006177387374231,−0.33709521577064094, −0.3906484106163457, 1.2083279353106968, 1.2083279353106968, 1.2083279353106968, 1.2083279353106968, 1.2083279353106968, 1.2083279353106968]

(C.1)

q̇e(0) = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] (C.2)

This section presents the implementation details for the simulations performed in both Mathemat-

ica R©11.2 and C++.

Appendix C.1. Porting files from Mathematica R©11.2 to C++

Magic: FileTemplateApply

using FileTemplateApply and CForm functions

Appendix C.2. Simulation in Mathematica R©11.2

The average time to solve the differential equations in Mathematica R©11.2 is recorded by using the

RepeatedTiming function. The Compile command is used to convert all of the coefficient matrices
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into compiled functions, which optimises all the expressions for real-valued input, cutting down their

evaluation time significantly, from the order of days to seconds.

Solve Flags

Appendix C.3. Simulation in C++

[AS: Appendix contains information about the solvers used. fsl odeiv2 step rkf45].

[AS: Begin appendix] Linear algebra package Eigen [? ](eigenweb), is used for matrix manipula-

tions. Numerical solvers of GSL, GNU Scientific Library [42](Gough:2009:GSL:1538674) are used for

numerical integration and solving linear equations. After experimenting with a few compilers, it is found

that the clang++ [43](LLVM:CGO04) compiler has an advantage in compilation time, reducing the test-

ing time. However, its execution time is almost the same as the g++ compiler [44](stallman2009using).

Refer to [AS: Appendix] for more details on various compilers tested. Execution time is further improved

by using code optimisation flags during compilation. Comparison of multiple compiler flags and their cor-

responding performance can be found in the [AS: Appendix]. As expected, the maximum reduction in exe-

cution times is obtained with the -Ofast optimisation flag which enables several optimisations including

-ffast-math. [AS: End appendix] [AS: Appendix: The GNU solver, gsl linalg complex LU solve is

used for solving linear equations].

Solver Linear solve compilation compilers flags Packages
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