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ABSTRACT

KEYWORDS: Parallel manipulators, Semi-regular Stewart platform manipula-

tor, 6-RSS manipulator, Lagrangian dynamics, feedback linearisa-

tion, extended-configuration-space, computational time, computed

torque control, trajectory-tracking control

Parallel manipulators are a class of robots characterised by their closed-loop architec-

ture which gives them the advantages of high precision and load carrying capacity over

their serial counterparts. Due to the presence of closed kinematic loops, the dynamics

model consists of both actuated and passive joints related by sizeable symbolic expres-

sions, evaluation of which hinders the speed of computer simulation. As a result, in

practice, the dynamics model is often simplified, and control algorithms are used to

compensate the model inaccuracies. Further, the computation of a model-based control

input in realistic time scales with a precise formulation of the system remains a chal-

lenge. Therefore, a dynamics formulation that would enable faster calculations without

compromising on the fidelity of the model forms the central idea of the report.
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CHAPTER 1

Introduction

1.1 Problem Statement

This report deals with the problem of obtaining a dynamics model within the La-

grangian framework, that reduces the computational effort and enables the implemen-

tation of model-based control of parallel manipulators.

1.2 Motivation

Parallel manipulators are a class of robots characterised by their closed-loop architec-

ture which gives them the advantages of high precision and load carrying capacity over

their serial counterparts. Due to the presence of closed kinematic loops, the manip-

ulator has both actuated and passive joints related by sizeable symbolic expressions,

evaluation of which hinders the speed of computer simulation. As a result, in practical

implementations, the dynamics model is often simplified, and control algorithms are

used to compensate the model inaccuracies. Even if one has a precise formulation of

a dynamics model, model-based control computation in realistic time scales remains a

challenge. Therefore, a formulation that would enable faster calculations without com-

promising on the fidelity of the model is needed.

In general, recursive Newton-Euler dynamic models are fast as shown in [52];

though these are not in the scope of the report, for lower degree-of-freedom systems, La-

grangian formulation might still hold a chance to match and may even surpass Newton-

Euler formulation in terms of computational efficiency. Moreover, the Lagrangian

method brings out the differential-geometric structure which is useful in deriving in-

sights in some cases. For an in-length discussion on this aspect, one may refer to [36].

Such a structure in the formulation further allows one to study aspects such as control-

lability and helps in the design of non-linear controllers which respect the properties of



the group in which the system evolves. Hence, despite having various formulations of

dynamics, which would meet the requirements of fidelity and computational time, in

this report the system is modelled only in the Lagrangian framework. Since the idea

of this work is not to investigate singularities, it is assumed that the manipulator is

moving within a Safe Working Zone (SWZ) as defined in [26], unless otherwise speci-

fied. The next section describes the Stewart Platform Manipulator (SPM), which is used

throughout the report to benchmark various dynamics formulations followed by a brief

overview on the literature on formulation, simulation and control.

1.3 Choice of system for simulation: SRSPM

For the verification of dynamic models to be formulated in the report, Semi-Regular

Stewart Platform Manipulator (SRSPM) is used as a benchmarking example. The

Gough-Stewart or the Stewart platform manipulator is a six degree-of-freedom plat-

form type manipulator, as shown in Fig. 1.1. Its construction involves a ground or fixed

platform, connected to six linear actuators (legs) through universal or spherical joints.

A moving platform is attached to the other ends of the linear actuators via spherical

joints as shown in Fig. 1.1. Since its introduction in [50], this manipulator has attracted

a large amount of research on the topics of kinematics, dynamics and control.

Figure 1.1: Semi-Regular Stewart Platform Manipulator

The interest in this particular manipulator comes from its wide range of applications

including automotive simulators [16, 45], flight simulators [46], motion of machine

tools [31] etc.
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1.4 Literature survey

The current section presents a summary of the literature survey on the topics of sim-

ulation, control, computational efficiency and dynamics formulations concerning the

Stewart Platform Manipulator (SPM).

1.4.1 Approaches for dynamic modelling of parallel manipulators

A dynamic model is a description of a system’s evolution with time in terms of cho-

sen generalised coordinates on the configuration-space, given an input. The kinematic

constraints introduced by the closed-loop nature of parallel manipulators make the for-

mulation of equations of motion complicated. This section presents a brief overview

of the attempts made to formulate the dynamics of the Stewart platform using various

techniques.

The earliest study of the dynamics of the Stewart Platform, as given in [15], dis-

cusses the statics problem of the manipulator by neglecting the leg masses. Later, the

effect of leg inertia was studied through dynamic simulations in [25]. Since the effects

of the inertia of the legs have a significant dependence on the motion specification for

the required applications, no explicit rules for neglecting or considering the inertias was

given. Further it was concluded that, the leg inertias are ignored when the velocity of

the end-effector is slow, or the payload mass is comparably large in which cases the

errors are still within the tolerable range.

Newton-Euler formulation

A Newton-Euler approach was adopted in [14] for the formulation of dynamics of the

6-SPS platform with the assumption of slender legs i.e., the legs are effectively treated

as one-dimensional bodies, to study the inverse dynamics problem for a given path.

The work carried in [11] deals with the modelling of the task-space dynamics using

the Newton-Euler method and its simulation in MATLAB using ode45 solver, which

is based on the 4th and 5th order Runge-Kutta integrator with adaptive step size. The

work claims that unlike in serial manipulators where the description is in the joint-

space, for parallel manipulators, the natural description is in the task-space. Further, the

3



significance of the theoretical results in observability and the challenges in designing

controllers for parallel manipulators due to the existance of multiple forward kinematic

branches have also been illustrated. A general formulation of closed-form dynamics

equations of parallel manipulators using Newton-Euler formulation is presented in [9].

Euler-Lagrange formulation

A Lagrangian dynamic model with the task-space variables as the generalised coordi-

nates has been obtained in [17, 38]. A complete description of the dynamics in the

task-space using the Lagrangian formulation was given in [31]. The closed-form ex-

pressions for the leg velocity Jacobian matrices have not been obtained in the work.

Moreover, the work demonstrates solving the inverse kinematics (IK) problem to ob-

tain the values of the configuration variables from the task-space variables. Further an

algorithm to obtain theM , C andG, matrices of the legs was also discussed.

Other methods

Apart from the approaches mentioned above, for the formulation of the dynamics model,

authors of [8] have proposed a Bond Graph-based approach. The procedure is based

on a hierarchical multi-level approach. Further, a set of 57 equations can be formulated

using Kane’s method as shown in [39] which claims to have a benefit of simplicity and

to reduce the number of symbolic computations required. Further, the formulated sys-

tem was simulated using the ode45 of MATLAB. An approach using virtual-work has

been employed in [53]. A modification over virtual-work was proposed by [55] which

was stated to be faster than Newton-Euler methods.

1.4.2 Methods in dynamic simulation and control

The work in [40] discusses general issues with dynamics and controls of parallel manip-

ulators. Modelling and control of a hydraulically actuated SPM are presented in [37],

with assumptions that the dynamic effect of the legs is negligible with respect to the

payload and the effect of leg dynamics was evaluated empirically using experiments

for a pressure feedback control algorithm. The work [39] suggested the use of the

4



Baumgarte stabilisation method for solving the DAEs and simulation in MATLAB us-

ing ode45 was presented. A stiffness-based control scheme for application in milling

was proposed and formulated in [31].

The time taken to compute FK is reported as 5-15 ms, in [13] and a dynamic model

with negligible actuator masses was simulated with a settling time constraint of 0.2 s.

For the sake of position control, the dynamic model was approximated by assuming the

non-linear terms to be constant in [32]. These modelling idealisations were treated as

disturbances and were expected to be compensated by the proposed H∞ controller. It

was assumed that the operating bandwidth of parallel manipulators is within 10 Hz and

a 50 MHz DSP was used for the implementation of control. It was reported that the full

inverse dynamics computation takes around 25 ms and the approximated inverse dy-

namics lesser than 1 ms. It was also observed that using the complete dynamic model

produced larger errors while tracking corners or high-frequency signals because of the

increase in the required sampling rate. A real-time adaptive controller was implemented

on the SPM in [44] assuming slow motion of the manipulator, i.e., the time-varying co-

efficients are assumed as constants. A model-based high-speed tracking control strategy

was implemented in [29]. Based on the small workspace used and the high-frequency

application proposed, the Coriolis and centripetal terms were neglected and were com-

pensated by a sliding-mode controller. Further, [24] proposed a sliding-mode tracking

controller and [51] proposed a disturbance rejection high precision control augmenting

a non-linear PD control of SPM.

It is shown in [23] that for speeds more than 0.1 m/s of the moving platform the

tracking errors of PD joint controllers are generally huge and have shown that a manip-

ulator with highly non-linear dynamics can attain high accuracy only when a non-linear

controller is used. A much more recent work, [48], has suggested the use of Adams-

MATLAB co-simulation for motion control of SPM. Co-simulation enables real-time

control and aims to reduce the cost of programming complexity and the cost of physical

prototyping.

5



1.4.3 Computational efficiency and implementations of dynamics

models

The work [12] presented the computational complexity of a MATLAB implemented

Newton-Euler formulation in terms of the floating point operations needed for inverse

dynamics (ID) computations. The paper reports 694 and 273 flops to compute forces

on each leg and for moving platform respectively and a total number of operations

of 4889 for ID, whereas a 6 degree-of-freedom serial manipulator requires only 1454

flops. The results showed that leg inertia contributes 20%-50% of the total demanded

force, which further increases with increased operational speeds and decreased pay-

load mass. Moreover, an attempt to qualitatively compare the time complexities of

actuator and configuration-space formulations was presented in [42] and the implemen-

tation was done in Mathematica. Expressions for theoretical, computational costs

and the runtime to compute these expressions were also presented. It is reported that

the configuration-space dynamic model is computationally less intensive than actuator-

space formulation. A parallel processing approach to implement resolved Newton-Euler

formulation for model-based control using a network of microprocessors is discussed

in [22], which uses a 16 bit host PC with four neighbours connected. Sampling time

of 0.66 ms was achieved with PUMA 560 serial manipulator. The inverse dynamics

computations were reported to take 464.2 µs.

Jordain’s principle of virtual work was followed in [1]. The work formulates the

dynamics model including all the friction effects. The proposed algorithm has in total

of 1987 operations to generate the control action in 0.15 ms at a sampling rate of 0.5 ms.

A circle tracker was implemented with an end-effector velocity of 1 m/s with real-time

control enabled. It was shown that friction compensation could improve control ac-

curacy significantly. As mentioned in [1], the other benchmarks in the literature, [20]

and [27], have reported the 2150 and 2078 computations respectively. Comparison of

various methods is as shown in Table 1.1 for the computation of the proposed kinematic

and inverse dynamic models. Further, for their specific application of Hexaglide ma-

nipulator, 202 µs for a sampling period of 900 µs with 3651 computations for dynamics

compensation in the control loop was reported in [23].

6



Table 1.1: Comparison of the number of floating point operations of various methods,
reproduced from [27]

Kinematic Modelling Inverse Dynamic Model Total
Method-1 659 ‘*’, 299 ‘+’ 631 ‘*’, 489 ‘+’ 2078
Method-2 659 ‘*’, 299 ‘+’ 715 ‘*’, 609 ‘+’ 2282
Gosselin 468 ‘*’, 282 ‘+’ 834 ‘*’, 566 ‘+’ 2150
Dasgupta - - 4489

1.5 Overview of the report

Chapter 2 covers the basic notations and formulations used in the report. Chapter 3 ex-

plores a few possible ways of computationally less intensive implementations to solve

the root-tracking problem and different formulations of angular velocity Jacobian matri-

ces. Chapter 4 deals with formulating and verifying dynamic models in three different

sets of generalised coordinates. Useful aspects are extracted from these models, and

an extended-configuration-space formulation and possible mapping to smaller dimen-

sional spaces are discussed in detail in Chapter 5. Simulation, comparison and C++

implementation of these models constitute Chapter 6. An example problem, dynamic

simulation of the 6-RSS manipulator is also presented. The best model is selected and

is used for trajectory tracking control in Chapter 7. The report ends with possible future

extensions and conclusion in Chapter 8.

1.6 Summary

An important point to note from the literature is that the requirements of accuracy of the

model and real-time simulation are opposed in nature. The model is generally simpli-

fied to meet realistic time constraints, and the errors resulting from such simplifications

are compensated using control algorithms. Therefore in this report, various formula-

tions of dynamics model are explored to find the right balance between fidelity and

computational time. Moreover, Lagrangian formulation and simulation of the complete

system (SRSPM) followed by control seems to be missing in the literature which is ad-

dressed in the current report. The current chapter is a brief survey on literature present

broadly on the topics of dynamics, simulation, control implementation in SRSPM and

7



an overview of the report structure.
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CHAPTER 2

Dynamics models of parallel manipulators using the

Lagrangian formulation

This chapter contains the basics definitions and notations used in the report followed by

the formulation of three variants of dynamics using the Lagrangian equation of motion

namely, configuration-space, actuator-space and task-space.

2.1 Basic definitions and notations

The architecture parallel manipulators consists of both active, i.e., active and passive,

i.e. non-actuated joints. These variables are related by constraint equations resulting

from the condition that all the closed loops in the manipulator should remain intact at

all times. Such constraints are called loop-closure equations and are defined in terms of

the configuration variables, q, as:

η(q) = 0, (2.1)

where q = [θ>,φ>]>, and θ ∈ Rn, φ ∈ Rm are the active and passive variables1 of the

manipulator respectively.

Since the loop-closure equations do not change with time:

dη

dt
= Jηqq̇ = 0, where Jηq =

∂η

∂q
. (2.2)

The above, Eq. (2.2) can further be written in terms of the active and passive variables

as:

Jηθθ̇ + Jηφφ̇ = 0, where Jηθ =
∂η

∂θ
, Jηφ =

∂η

∂φ
. (2.3)

1In the following sections the task-space variables or the end-effector coordinates are also included
in φ, as they are also unactuated as well as unknown.



The matrices Jηq, Jηφ are called as the configuration Jacobian matrix and the con-

straint Jacobian matrix and note that the numerical evaluation of these matrices is crit-

ical for the simulation of the dynamics model system.

2.2 Lagrangian formulation of the equation of motion

The following are the assumptions under which the formulations remain valid:

1. All the links are assumed to be rigid,

2. There is no friction, and all the joints are ideal,

3. The mass distribution of all the links is uniform.

Since parallel manipulators are constrained mechanical systems, the equations of

motion are obtained using the constrained Lagrangian formulation, which is described

widely in literature, such as, [18, 54]. The constraint Lagrangian is formulated as:

L′ = L+ η>λ.

The Euler-Lagrange equation applied on the formulated Lagrangian results in the con-

strained Lagrangian equation of motion which is of the form:

Mq̈ +Cq̇ +G = Qnc + J>ηqλ, (2.4)

where, M is the generalised mass matrix, C is the combination of centripetal and

Coriolis forces, G is the vector of potential forces, Qncis the vector of external forces,

and J>ηqλ is the vector of constraint forces, arising out of the loop-closure constraints.

Eliminating the Lagrangian multipliers, λ and formulation of the task-space dynamics

is discussed in the subsequent sections.

Note that since the formulation is done along with the constraints, any set of generalised

coordinates, even if not completely independent can be used to formulate the systems

dynamics.
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2.3 Configuration-space formulation

The set of coordinates used to describe the system in this space is, q = [θ>,φ>]>, i.e.,

it consists of both the active and passive joint variables. In this case, λ can be obtained

by considering the time derivative of the Eq. 2.2:

Jηqq̈ + J̇ηqq̇ = 0. (2.5)

Substituting for q̈ from the Eq. 2.4, λ is obtained as:

λ = −A−1
(
J̇ηqq̇ + JηqM

−1f
)
, where (2.6)

A = JηqM
−1J>ηq, (2.7)

f = Qnc −Cq̇ −G. (2.8)

Using the above equations, forward dynamics model is of the form:

q̈ =M−1f −M−1J>ηqA
−1
(
J̇ηqq̇ + JηqM

−1f
)
. (2.9)

Refer to [41] for an in-depth discussion onA and Jacobian matrices.

2.4 Actuator-space formulation

The generalised coordinates used in this formulation are limited to the actuated vari-

ables. In this case λ is eliminated using the fact that the constraint forces represented

by J>ηqλ, do not do any work and hence:

(
J>ηqλ

)>
q̇ = λ>Jηqq̇ = 0.

Further using, q̇ = Jqθθ̇, the equation of motion can be reduced into:

Mθθ̈ +Cθθ̇ +Gθ = Q
nc
a , (2.10)

Mθ,Cθ andGθ are analogues of the coefficient matrices derived in Eq. 2.4 of configuration-

space dynamic model. It should be noted that the process has achieved a change of co-
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ordinates i.e., mapping the dynamic model from one set of variable space to the other,

which is a recurring theme in the extended-configuration-space formulation. Note that

such a mapping is made possible in the actuator space by the Jηφ matrix and hence

is valid only on the existence of its inverse. The singularity caused by the constraint

Jacobian matrix is termed as the gain-type singularity.

2.5 Task-space formulation

The set of variables representing the output space of a manipulator is called the task-

space, represented by x. The task-space generally consists of, the Cartesian coordi-

nates, {x, y, z} of the geometric centre and the Rodrigues’ parameters, {c1, c2, c3},

related to the orientation of the moving platform. The form of equation of motion is

similar to actuator-space model:

Mxẍ +Cxẋ +Gx = Q
nc
a , (2.11)

Mx, Cx, Gx are the coefficient matrices of the task-space dynamics, which are func-

tions of the task-space variables only.

2.6 Forward Kinematics

The relationship between the passive variables and the actuated variables is described

by the forward kinematic (FK) map. For a parallel manipulator, this map might not be

unique, i.e., for a given set of actuator variables there might be more than one feasible

configuration of the manipulator.

2.7 Inverse Kinematics

The inverse kinematics (IK) deals with the problem of finding the actuator and passive

variables given the task-space variables. In parallel manipulators, each of the legs are

independent and generally have simple serial linkage connections, which simplifies the

IK problem.
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CHAPTER 3

Elements of kinematic modelling of parallel

manipulators

3.1 Introduction

There are several formulations to arrive at the FK solutions for the SRSPM, as given

by [33], [34], [10] etc. However, as mentioned in [42], solving the FK problem involves

arriving at the forward kinematic univariate (FKU), which requires solving a 20 degree

polynomial for an SPM, which might be computationally expensive. As discussed in

Section 2.4, the actuator-space dynamic model is obtained from the configuration-space

coefficients and hence is a function of q. So, this requires solving the FK problem at

every instant of dynamics simulation to find the passive angle values. Moreover, each

FK solutions are not unique, and hence the required solution needs to be tracked. In this

section, the implementation of root-tracking and the forward kinematics problem in the

context of the SRSPM are discussed. The inverse kinematic (IK) relations used in the

current work are derived as described in [4].

3.1.1 Convention for representing the moving platform

In an SRSPM, the length of the ith prismatic joint is represented as li, and (x, y, z) repre-

sent the Cartesian coordinates (position) of the top plate. Rodrigues’ parameterisation,

(c1, c2, c3) is used for describing the orientation of the moving platform. The angles at

the ith universal joint is represented by (φi, ψi), i = 1, 2 . . . , 6 which are rotations about

the y and the x axes, respectively. Therefore, the total number of configuration-space

and task-space variables are 18 and 6, respectively.

The base and the moving platforms of the manipulator are represented by hexagons

circumscribed by a circle of radius rb and rt respectively the angle between alternate

consecutive vertices being γb and γt. The convention followed in [6] is as shown in

Fig. 3.1.



Figure 3.1: Base and axis representation followed in and reproduced from [6]

In the current work, the relative orientation of the base and moving platforms at

t = 0 are such that their sides are parallel to each other as shown in Fig. 3.2. This

orientation can be achieved by rotating the right-handed reference frames attached to

the top and fixed platforms in Fig. 3.1 by 2π
3
− 2γt and 2π

3
− 2γb

1 respectively.

3.1.2 Root-tracking methods

At every time step of the dynamics simulation the actuator variables corresponding to

the current instant are obtained by integrating the equation of motion, Eq. (2.4) up to the

current time step. For a given set of actuator variables, there might be several possible

branches of solutions for the FK problem. Hence, in reality, the current branch needs to

be tracked among all the solutions obtained.

Nearest neighbour method

In this method, the FK problem is solved and the obtained solutions are compared with

solution of the previous time step to select the appropriate branch.

In method 1, Φi−1 is the selected branch at previous instant and Φi
b represents the bth

branch of the current time step i. The operations max and min returns the maximum,

and minimum value of a given list and | · | returns the absolute value of each element in

1Units for all the angles are in radians
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Figure 3.2: Relative orientations of the base and the moving platform with respect to
the global frame of reference used in this report

Method 1 Root-tracking method using the nearest neighbour method

1: Obtain θi integrating the equation of motion, Eq. (2.4), up to the ith time step
2: φi ← All the solutions of the FK problem
3: if φik ∈ S1, where k = 1, 2 . . . ,m then
4: Φ←Map each φik into the range of [0,2π]
5: end if
6: for b ≤ number_of_branches do
7: Ψb ← max(|Φi

b −Φi−1|)
8: end for
9: Select the branch b corresponding to min(Ψb),

a given list.

In the context of the FK problem, this method is computationally intensive as it is

required to find all the roots at each time step, and the solutions corresponding to each

branch compared. However, in reality, for dynamic simulation, only one set of results

corresponding to the initial conditions of the physical system is required. Therefore a

method that computes only the necessary set of solutions at every instant is needed.
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Integration of first-order form of the constraint equations

Consider the loop-closure equations given in Eq. (2.1), consider its first order derivative

given in Eq. (2.3). Writing the equation in terms of φ̇ gives:

φ̇ = Jφθθ̇, where Jφθ = −J−1ηφJηθ, det(Jηφ) 6= 0. (3.1)

Substituting the values of actuator-space variables obtained by the integration of the

equation of motion, Eq. (2.4), until the previous instant in the Eq. (3.1) leads to an

initial value problem which, when solved from the previous time step to the current,

gives the required passive joint angle values.

Method 2 Root-tracking by integration of first order constraint

1: Obtain θi integrating the equation of motion, Eq. (2.4), up to the ith time step
2: Substitute θi into Eq. (3.1) and obtain a differential equation only in variables, φ
3: With φi−1 as initial condition, integrate equation obtained in step-2 until the next

time step to obtain φi

As opposed to the nearest neighbour method, only the required branch is tracked in

this algorithm. Since this technique uses integration at each time step, there is a trade-off

between accuracy and the time taken to compute the solutions. With time, the calculated

values diverge, violating the loop-closure constraint if not enforced explicitly.

Newton-Raphson based root-tracking

In this method, the Newton-Raphson (NR) method is employed at each time step to

ensure that the constraint equations are not violated. In method 3, η and J represent

Method 3 Newton-Raphson based root-tracking

1: Obtain θi integrating the equation of motion, Eq. (2.4), up to the ith time step
2: η(φ) and J(φ)← θi substituted in η(θ,φ) and J(θ,φ)
3: η ← Substitute φi−1 in η(φ)
4: while max(|η|)≥ ε and loopcount≤ max_iterations do
5: loopcount++
6: J ← Substituting φi−1 in J(φ)
7: δφ← Solution of J δφ = η
8: φi ← φi−1 − δφ
9: η ← Substituting φi in η(φ),

10: end while

the constraints and its Jacobian matrix respectively, and ε is the desired numerical zero

16



i.e., any value a is considered to be zero if, |a| ≤ ε ∈ R+.

The advantages of this method are:

1. Ability to track only the required branch among all the solutions

2. Ability to tune the accuracy of the solutions

3. Ability to obtain solutions that strictly satisfy the loop-closure constraints

A strategy used by [5] is to use the analytical FK formulation whenever the root

tracking fails and continue tracking using one of the above methods from the next time

step. It is to be noted that all of the above methods fail when a manipulator passes

through a singularity, where any two or more of the forward kinematic branches merge.

For the current scope of simulations, it is assumed that the manipulator is working

within the Safe Working Zone (SWZ), as defined in [26]. Given the advantages of the

NR method based root-tracking, this method is used for all the subsequent simulations.

3.2 Formulations of velocity Jacobian matrices

In this section, two ways to arrive at expressions for the velocity Jacobian matrices is

discussed.

Given the velocity of three points of the moving platform

This method is reproduced from the appendix A of the book by J. Angeles, [2], to

compute the angular velocity Jacobian matrices given velocities of three non-collinear

points p1,p2,p3 on a rigid body. Let the centroid of these three points be:

p =
1

3

3∑
i=1

pi.

Then the velocity of the centroid would be,

ṗ =
1

3

3∑
i=1

ṗi.
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Given velocity of the centroid, position of the points and angular velocity of the rigid

body, the velocity of any given three points can be found as,

ṗi = ṗ+ Ω(pi − p) i = 1, 2, 3, (3.2)

where Ω is the skew-symmetric matrix corresponding to the angular velocity vector ω.

Define a matrix P as,

P = [p1 − p | p2 − p | p3 − p],

which on differentiating with respect to time gives,

Ṗ = [ṗ1 − ṗ | ṗ2 − ṗ | ṗ3 − ṗ], then

Ṗ = ΩP , from Eq. (3.2).

Multiply the Eq. (3.2) by ω on both sides, this gives,

(ṗi − ṗ)>ω = 0, i = 1, 2, 3, (3.3)

Ṗ>ω = 0. (3.4)

From the theorem given in Appendix A of the book [2], given the above condition in

Eq. (3.4), the angular velocity can be found as,

Dω = Ṗ ∨,

D =
1

2
[tr(P )I − P ],

Ṗ ∨ =
(Ṗ − Ṗ>)∨

2
.

Therefore ω of the rigid body can be found by inverting theD matrix,

ω =D−1Ṗ ∨,
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Given the positions of three non-collinear points of the moving platform

This method of computing the linear and angular velocity Jacobian matrices for SRSPM

can be found in [4]. The idea is to first find the orientation,R ∈ SO(3) of the rigid body,

given three points on the body then finding the angular velocity as,

Ω = R>Ṙ.

Since the coordinates of the moving platform of the SRSPM are a function of the

configuration-space variables, this method is used to compute the angular velocity of

the moving platform in this report.

3.3 Summary

Three methods for root-tracking are illustrated, and their advantages are discussed. The

nearest-neighbour method requires comparison of all the branches whereas integration

and NR method tracks the roots corresponding to the required branch only. Subse-

quently NR method is chosen for root-tracking as gives direct control on the precision

of the solution. Two alternatives for the computation of angular velocity are shown.
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CHAPTER 4

Formulation of the dynamics models

4.1 Introduction

The current chapter briefly summarises the implementation of three popular formu-

lations of dynamics models followed by validation of the numerical results obtained.

Common implementation issues in modelling that are not identified by these verifica-

tions checks are illustrated. Let the SRSPM fall freely from a pose only under the in-

fluence of gravity starting from rest, i.e., q̇(0) = 0 with the following initial conditions

in the task-space variables,

q(0) = [0, 0, 1.1, 0, 0, 0]>.

All the dynamics models formulated are simulated for these conditions for numerical

validation of the models. For a complete derivation of the equations of motion for a

given system using constrained Lagrangian formulation can be found in standard texts

like [19] or [18], and the details are skipped here.

4.2 Formulation the of the dynamics model in the configuration-

space

For manipulators such as SRSPM or the 6-RSS one cannot obtain a closed form solution

for the FK problem and hence one cannot reduce all the passive joint angles in terms

of the actuator coordinates. In parallel manipulators, the set of active and passive joint

coordinates together are called as the configuration-space of the manipulator and are

represented by,

q = [φ>,θ>]>,



where φ is the vector of passive variables and θ is the vector of active variables as

discussed in Section 2.3 and the equation of motion is of the form, Eq. (2.4). Let, bi

and ai be the vectors corresponding to the ith vertex of the base and moving platforms,

respectively, in the global frame. Then,

ai = bi +Ry(φi)Rx(ψi)li, where i = 1, 2 . . . 6, (4.1)

where li represents a vector along the ith leg with a magnitude equal to that of its

length, and Rx and Ry are the rotation matrices about x and y axes, respectively. A

set of constraint equations are obtained by imposing the conditions of the rigidity of the

moving platform as given in [6], as explained below,

1. Relative distances between the vertices are fixed, giving rise to a set of 6 equa-
tions;

2. Forming rigid triangles by placing a constraint on the distance between three
consecutive points gives 3 more equations;

3. Ensuring that the axis of all the planes of the above formed triangles parallel, i.e.,
all the triangles are in the same plane results in 3 additional equations.

These together form 12 constraints which are functions of 18 variables, i.e., 6

actuator-space variables, θ and 12 passive angle variables, φ. For the complete for-

mulation of configuration-space dynamic model, one may refer to [4].

Verification of the model for mathematical consistency

The symbolic expressions for the coefficients of the equation of motion of SRSPM are

derived in Mathematica R©11.2. The inbuilt Compile function was used to optimise

each of the expressions for real-valued input, which improves the computation time

significantly. These expressions are then converted into a C++ compatible code. Refer

to Appendix C for greater details.

Numerical error measures to validate mathematical consistency of the dynamic model

of a parallel manipulator was given in [41] by considering the norm of zeroth, first and

second order forms of the constraint equations as given in Eq. (2.1). In the current work

instead of norm of the errors, the corresponding maximum absolute error is considered

as the measure. The error plots corresponding to the data generated from Mathemat-

ica R©11.2 for the free-fall simulation are presented below.
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1. Zeroth-order check on the loop-closure constraint (e1) :
This measure quantifies the deviation from the loop-closure equations in Eq. (2.1)
vs time,

e1 = max(|η(q)|). (4.2)
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Figure 4.1: Absolute maximum error in loop-closure equations with time as given in
Eq. (4.2)

2. First-order check on loop-closure constraint (e2) :
Consider the deviation of first order derivative of the loop-closure constraints with
respect to time,

e2 = max(|Jηqq̇|). (4.3)

This verifies the consistency of the joint velocities with the loop-closure con-
straint in the Pfaffian form.

3. Second-order check on the loop-closure constraint (e3) : The consistency of the
generalised accelerations with the loop-closure constraint is verified by consider-
ing its second order derivative with respect to time.

e3 = max(|Jηqq̈ + J̇ηqq̇|). (4.4)

4. Conservation of Energy (e4) :
The total mechanical energy of the manipulator, E(t) is given as,

E(t) = T (t) + V (t), (4.5)

where T (t) and V (t) represent the kinetic and potential energy, respectively, of
the manipulator, since the current simulation is a free-fall case, there is no actua-
tion and hence the total energy should remain constant. We check the percentage
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Figure 4.2: Absolute maximum of first order loop-closure equations with time as given
in Eq.( 4.3)

change in energy of the system for the entire time given as:

δE =
E(t)− E(0)

E(0)
× 100.

Where E(0) is the energy of the system at time t = 0.

A note on the mathematical consistency checks

The checks mentioned in Section 4.2 do not necessarily mean that the system modelled

is the actual system; it only ensures that the formulation is mathematically consistent.

Common sources of inaccuracies involve mismatch of inertia or mass of the elements

in the model vs the physical system. These checks also fail to catch any representation

errors. Say, if the local frame of the moving platform of the SRSPM is defined with a

constant offset in its orientation from the global frame, in such cases, even if the simu-

lation data is not consistent with this representation, the model remains mathematically

consistent. In other words, modelling errors done before the formulation of mass ma-

trix remain mathematically consistent but might not represent the real intention of the

simulation.
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Size1 of relevant matrices

The sizes of the coefficient matrices used in the dynamic simulation in C++ and Mathematica

are as shown in Table 4.1.
1Corresponds to the size of the expression computed using ByteCount function in Mathemat-

ica R©11.2 or the size of the file containing the expression in C++
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Table 4.1: Size of the coefficient matrices used in configuration-space dynamic model
of the manipulator

Size (MB)
Expression C++ Mathematica

M 0.900 13.369
C 103.4 748.207

4.3 Formulation of the dynamics model in the actuator-

space

Deriving the equation of motion in the actuator space is as defined is Section 2.4. Since

there are no closed-form solutions of the FK problem, the dynamic model is formu-

lated in a higher dimensional space, i.e., the configuration-space and is mapped to the

actuator-space, resulting in an equivalent unconstrained dynamic system. The deriva-

tion of the same can be found in [43, 41].

Verification of the model for mathematical consistency

Since the M , C and G matrices consist of both passive and active variables; it is

necessary to solve the FK problem at each time step and hence NR method based root

tracking described in 3 is used for the same. It is ensured that each root is found with

enough accuracy to keep the error in the constraint equation within the order of 10−15.

Since the manipulator attains a singular pose at time t = 0.48 s, where the inversion of

Jηφ fails as discussed in Section 2.4, the simulation does not proceed after this time.

Hence the numerical checks are also performed up to t = 0.48 s only. Fig. 4.5 shows

the checks described in Section 4.2.

It is clearly seen that enforcing the loop-closure constraint explicitly has brought

down the order of errors as compared to the configuration-space model which is shown

in Section 4.2. However, the expressions ofMθ andCθ matrices could not be obtained

in closed form as they involve expensive symbolic inverse computations and hence are

calculated numerically from the M and C matrices at each time step. An in-depth

comparison between the formulations and their relative time complexities can be found

in [42].
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Figure 4.5: Validation of the actuator-space mathematical model

4.4 Formulation of the dynamics model in the task-space

The task-space dynamics model is derived as discussed in Section 2.5. In such a de-

scription of the system, expressions for angular and linear velocity Jacobian matrices of

the moving platform will be more straightforward as compared to that of the legs. To

formulate the dynamics completely in the task-space the IK solutions are used to relate

the configuration-space variables q and the task-space variables x.

4.4.1 Implementation

It should be noted that it was not possible to obtain the closed-form expressions of the

symbolic C matrix as it is computationally intensive as already mentioned in [31] and

hence is obtained numerically from the partial derivatives of the mass matrix as given
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in Eq. 4.6, at each instant, increasing the execution time significantly.

Cij =
1

2

18∑
k=1

(
∂Mij

∂qk
+
∂Mik

∂qj
− ∂Mkj

∂qi

)
q̇k (4.6)

Size and computation time

The sizes of the coefficient matrices used in the dynamic simulation, in Mathematica

are as shown in Table 4.2. A much wiser way to formulate the task-space dynamics

Table 4.2: Size of the coefficient matrices used in dynamics modelled in the task-space
of the manipulator

Expression Size (MB)
M 369.044

All the partial derivatives ofM 18531.400

would be to solve the IK problem at each instant keeping the coefficients matrices as

functions of the configuration-space variables. The error plots corresponding to the

data generated from Mathematica R©11.2 for the free-fall simulation are presented in

Fig. 4.6.

4.5 Summary

Dynamic models are formulated with three different sets of generalised coordinates.

The relative sizes are given for comparison. A free-fall simulation of the SRSPM is

done to check for numerical errors by measures defined by [41]. A few implementation

details of the simulation in C++ is also presented. A note summarising the scope of the

numerical checks is also given.
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Figure 4.6: Validation of the task-space mathematical model
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CHAPTER 5

Dynamics model in the extended-configuration-space

Observing the previous formulations, it is apparent that each method has relative advan-

tages and disadvantages. The primary computational burden in the configuration-space

formulation is due to the computation of the velocity Jacobian matrices of the moving

platform, whereas in the task-space it is due to the Jacobian matrices of the prismatic

links. In task-space, representing the centre of mass and orientation of the legs in terms

of task-space variables; and in configuration-space, representation of the position and

orientation of the moving platform in terms of configuration-space variables, make the

expressions complicated.

5.1 Formulation of the dynamics model

The idea of extended-configuration-space formulation is to represent each body of the

system in its natural coordinates, i.e., to describe all the elements with their associated

variables. Such a description would avoid posing one set of variables in terms of others

and thereby reducing the complexity of the entire system’s description. In the case of

SRSPM, all the variables together represent the extended-configuration-space.

qe = [x>,θ>,φ>,ψ>]>.

Another advantage is a significant reduction of complexity in the formulation of the

constraint equations. For an SRSPM the constraints may be formulated by equating

the positions of the vertices of the moving platform as reached from the centre of the

moving platform and along the legs,

p+Rtpali − ai = 0, where i = 1, 2, . . . 6, (5.1)

and p is the position of the geometric centre of the moving platform, {x, y, z}, Rtp

represents the rotation matrix of the moving platform, ali are the vertices of the moving



platform described in the local frame, and ai is as defined in Eq. (4.1).

Such a formulation of constraint equations drastically simplifies the expressions

corresponding to the angular and linear velocity Jacobian matrices of the manipulator

and is reflected in the execution time required. Since not all the equations contain all

the variables, Jacobian matrices remain sparse reducing the computational time. Since

there is no need to find the relations between different sets of variables (using FK or

IK), it is easy to model the dynamics of a system in this method. The position and

orientation of the moving platform are given in terms of the task-space variables, x, as

p and Rt and the rest in configuration-space, q. Hence, the linear and angular velocity

Jacobian matrices of the moving platform are given as,

Jvt =
∂p

∂qe
,

Jωt =

(
R>t

∂Rt

∂qe

)∨
,

where (·)∨ returns the corresponding vector form of a skew-symmetric matrix. The

derivation of expressions for the centre of mass of the links can be found in [4] and is

reproduced below for the sake of completeness.

pbi = bi +Ry(φi)Rx(ψi)lbi, where i = 1, 2 . . . 6, (5.2)

pai = bi +Ry(φi)Rx(ψi)lai, where i = 1, 2 . . . 6, (5.3)

where pai and pbi are the positions and Rl for orientation of the first and second link

of ith prismatic joint computed as given in Section 3.2. The angular and linear velocity

Jacobian matrices are given as,

Jvai =
∂pai
∂qe

,

Jvbi =
∂pbi
∂qe

,

Jωl
=

(
R>l

∂Rl

∂qe

)∨
.
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Equation of motion

The total kinetic energy of the manipulator T is given as,

Ta =
1

2

6∑
i=1

(J>vaimaiJvai + J
>
ωl
IaiJωl

);

Tb =
1

2

6∑
i=1

(J>vbimbiJvbi + J
>
ωl
IbiJωl

);

Tt =
1

2
(J>vtmtJvt + J

>
ωt
ItJωt);

T = Ta + Tb + Tt.

In the above Ta, Tb, Tt are the kinetic energies and mai, mbi, mt are masses of the legs

and moving platform respectively. Assuming the plane containing the fixed platform as

the reference, the total potential energy of the manipulator, denoted by V is computed

as,

Vl =
6∑
i=1

(maigzai +mbigzbi)

Vt = mt g zt

V = Vl + Vt,

where zai, zbi, zt are the z-coordinates of the legs and the top plate. Once the La-

grangian is attained, the equations of motion can be derived by using the Euler-Lagrange

equations which would be of the form,

M (qe)q̈e +C(qe, q̇e)q̇e +G(qe) = Q
nc
e + J>ηqeλ, (5.4)

The equations of motion are in the form of 24 coupled non-linear and differential equa-

tions, with the coefficient matrices being functions of the extended-configuration-space

variables and their first-order time derivatives. This space alone does not convey much

physical meaning as the prismatic joints are the only controllable variables. Since the

formulation is done in a higher i.e., 24 dimensional space, there are multiple options

to map i.e., either to actuator-space or to the task-space, both of which are 6 dimen-

sional spaces. Note that this mapping is similar to the mapping from 18 dimensional

configuration-space to the actuator-space. Further, such a mapping is not possible to
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the configuration-space, as the mapping matrix, Jηx is rectangular and hence non-

invertible.

The sizes of the coefficient matrices used in the dynamic simulation, in C++ and

Mathematica R©11.2, are as shown in Table 5.1. It is clearly seen that the order of

Table 5.1: Size of the coefficient matrices used in dynamics modelled in the extended-
configuration-space mapped to task-space the manipulator

Size (KB)
Expression C++ Mathematica

M 4.100 35.515
C 15.500 100.984

magnitude of the expression sizes is configuration was in MB whereas here it is in KB.

5.2 Extended configuration-space model mapped to task-

space variables

Here the reduction of dynamics model from extended-configuration-space to the task-

space unconstrained dynamics is illustrated.

{x,θ,φ} 7→ {x}. (5.5)

Consider the derivative of the constraint equations, Eq. (5.1) with respect to time,

q̇ = −J−1ηq Jηxẋ, (5.6)

where Jηx =
∂η

∂x
and Jηq =

∂η

∂q
. (5.7)

From Eq.( 5.7), it is apparent that this map fails when Jηq is non-invertible, which

leads to a configuration-space singularity as explained in [41]. The numerical checks

described in Section 4.2 are used here and the results are shown in Fig. 5.1.
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Figure 5.1: Validation of the extended-configuration-space mapped to task-space math-
ematical model

5.3 Extended configuration-space model mapped to actuator-

space variables

In this case, the aim is to reduce the dynamic model from the extended-configuration-

space to the actuator-space, to form a set of unconstrained equations of motion that

would enable control of the manipulator.

{x,θ,φ} 7→ {θ}. (5.8)

Let the set of task-space and passive variables be denoted as,

qx = [x>,φ>]>.
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Consider the derivative of the constraint equations, Eq.( 5.1), with respect to time,

q̇ = −Jηqx−1Jηθθ̇, where Jηθ =
∂η

∂θ
and Jηqx =

∂η

∂qx

From the above expression, it is apparent that this map fails when Jηqx is non-invertible

which needs to be studied. The checks as given in Subsection 4.2 are performed and

are in Fig. 5.2.
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Figure 5.2: Validation of the extended-configuration-space mapped to actuator-space
mathematical model

5.4 Summary

The extended-configuration-space dynamic model is formulated by taking in both the

task-space and configuration-space variables together. The equation of motion is then

mapped to task and actuator-spaces to obtain respective unconstrained dynamic models.
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CHAPTER 6

Simulation and comparison of various formulations

6.1 Introduction

The dynamic models formulated in the previous chapters are compared with respect

to their simulation times and sizes of the coefficient matrices in the current section.

Consider a symmetric pose of the SRSPM, with no relative rotation of the local axis of

the moving platform concerning the global frame. The simulation setting is as explained

earlier, let the manipulator fall freely from such a pose only under the influence of

gravity starting from rest, i.e., q̇(0) = 0 with the following initial conditions,

qe(0) = [0, 0, 1.1, 0, 0, 0]>.

All the formulations are compared against each other and are validated for this specific

simulation data. The formulated dynamic models are simulated in both Mathemat-

ica R©11.2 and C++ for a simulation time of 1 s on an AMD Ryzen 7 1800X, 8 core

CPU with 16 GB RAM and a clock speed of 3.6 GHz installed with Ubuntu 18.04.1

LTS. Please note that only one core is used for simulating the free-fall.

6.1.1 Dynamic simulations and observations

The formulated models are rewritten in state-space representation:

ẋ = f(x,u).

The inbuilt NDSolve function is used for integrating the equations of motion, with the

parameter of AccuracyGoal set to 10−13 and Adams is used for numerical integra-

tion. The times taken for free-fall simulation in each case are as shown in Table 6.1.

The time taken to solve the differential equations in Mathematica R©11.2 is recorded by

using the RepeatedTiming function, with evaluation time set to a minimum of 60 s,



which returns the average time taken to run the code by running it at least for 60 s in

a loop. All of the coefficient matrices are converted into compiled functions using the

Compile command which optimises all the expressions for real-valued input, cutting

down evaluation time significantly, from the order of days to seconds.

Table 6.1: Computational time taken for the free-fall simulation in Mathematica R©11.2

Formulation Real-time (s) Simulation time (s)
Configuration space 1.000 0.236
Actuator space 0.480 0.195
Extended mapped to task-space 1.000 0.241

It is to be noted that for the given initial conditions if one wishes to increase the

Accuracy Goal to 10−15, the configuration-space dynamics takes around 120 s sim-

ulation time for 1 second of real-time. This shows that not only the solver but also the

initial conditions and accuracy requirements have a significant influence on the simula-

tion time.

During the simulation of the actuator-space dynamics, the root-tracker encoun-

ters ill-conditioned matrices at t = 0.48 s, where the determinant of Jηφ matrix is

3.44× 10−9, i.e., the manipulator is close to a gain-singular pose. Hence the simulation

terminates at t = 0.48 s, which corresponds to the pose shown in Fig. 6.1

(a) t = 0 s

(b) t = 0.48 s

Figure 6.1: Motion of the manipulator when simulated in the actuator-space

When the manipulator reaches the singular pose in the configuration-space model,

further motion is solely dependent on the solver, and one cannot precisely predict the di-

rection of movement. As shown in Fig. 6.2, the moving platform starts moving upward

after reaching the singular pose which occurs at time t = 0.48 s.
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(a) t = 0 s

(b) t = 0.4 s
(c) t = 0.7 s

Figure 6.2: Motion of the manipulator when simulated in the configuration-space

In the extended-configuration-space mapped to task-space case, the system does not

encounter any singularity at time t = 0.48 s and proceeds to fall, moving below the

fixed platform as expected according to [41], which is shown in the Fig. 6.3.

(a) t = 0 s

(b) t = 0.4 s
(c) t = 0.7 s

Figure 6.3: Motion of the manipulator when simulated in the extended-configuration-
space

6.1.2 Implementation of dynamic simulations in C++

All the models are ported to C++ using FileTemplateApply and CForm func-

tions for comparing their run times. Further details about the same can be found in

Appendix C. These coefficient matrices in C++ are then used for simulation and com-

parison between the methods. Linear algebra package Eigen [? ], is used for matrix

manipulations. Numerical solvers of GSL, GNU Scientific Library [21], are used for

numerical integration and solving linear equations.

After exploring a few compilers, it is found that the clang++ [30] compiler has

an advantage in compilation time, thereby cutting the testing and debugging time, with

almost the same execution time as the g++ compiler [49]. Further information can be
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found in Appendix B. Execution time is further improved by using code optimisation

flags during compilation. Comparison of various compiler flags and their corresponding

performance can be found in the Appendix B. As expected, the maximum reduction in

execution times is obtained with -Ofast optimisation flag. The equations of motion

rewritten in the state-space form are integrated using gsl_odeiv2_step_rkf45,

which is an explicit Runge-Kutta-Fehlberg method, a good general purpose integra-

tor. Further information is given in Appendix C. The simulation is carried from t =

0 s to t = 1 s, with 100 equally spaced steps. For the actuator-space simulation, a

Newton-Raphson method based root-tracking algorithm is written in C++. The GNU

solver, gsl_linalg_complex_LU_solve is used for solving linear equations.

The details of the code and implementation can be found in the GitLab repository

https://gitlab.iitm.ac.in/ed14b037/Dynamics_CPP.git. The av-

erage simulation time for 1000 runs is recorded for each case and is as shown in Ta-

ble 6.2.

Table 6.2: Computational time taken for the free-fall simulation in C++

Formulation Real time (s) Simulation Compilation
time (s) time (min)

Configuration space 1.000 0.223 3.259
Actuator space 0.480 0.193 3.229
Extended mapped to task-space 1.000 0.036 0.255

A few things to note during the implementation of dynamic simulation in C++ are:

1. Noted that compiling the complete C matrix at once is not possible (with the
computer used) and hence each element of the matrix is extracted as an indi-
vidual .cpp file and is compiled independently after which they are all used to
reconstruct the C matrix.

2. The coefficient matrices are functions of repetitive sine and cosine of variables,
and hence the evaluation of these expressions would consume a fair amount of
computational effort if not computed once and reused.

3. Instead of calculating all the configuration-space variables in terms of the task-
space variables alone, a cascaded substitution can be done to obtain the passive
angles; such a substitution avoids recomputing repetitive expressions, saving ex-
ecution time. In the case of SRSPM, the following is done,

4. The matrix inversion operation is computationally more expensive than solving a
linear equation for computing the second-order derivatives of the generalised co-
ordinates, q̈e, in the Eq. (2.4). Please note that using the LinearSolve function
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Cascaded substitution for computing the IK solutions
1: First find the link lengths, l given the task-space variable data, x
2: Compute the values of ψ given the link lengths, l, and the task space data, x
3: Finally, find φ which is a function of x and ψ alone.

in Mathematica R©11.2 has not shown a significant improvement in performance.
However, it might still be useful in reducing the execution time to compute when
implemented in C++.

6.2 Comparison of different methods

From Table 6.2 it is clear that the extended-configuration-space mapped to task-space

takes the least amount of computation time. This reinforces the observations of the

authors in [35] that dynamic models with lesser number of variables would not neces-

sarily lead to faster simulation. In other words, even though the coefficient matrices in

configuration-space are of size (18×18) as compared to extended-configuration-space,

(24 × 24) size matrices, the later has a significantly lower computation time. This can

be attributed to the fact that in the latter case though the matrices have a higher dimen-

sions, they are sparse as mentioned in Section 5.1. The sparsity of M and C matrices

are visualised as shown in Fig. 6.4. In the matrix sparsity plot, Fig. 6.4, cells with “
1

1

1

1”

denote the presence of symbols, “
1

1

1

1” denote the presence of constants and the white

spaces denote zero valued elements.

Comparison of errors in simulation of the dynamics models

As discussed in Section 4.2, validating the dynamics model formulated is essential

to check its mathematical consistency. Dynamical simulations are prone to deviate

from the true evolution of the system due to the incorrect modelling, truncation errors,

approximations in the numerical method used etc. It can be seen from Fig. 4.2 that

the magnitude of the absolute maximum error from the loop-closure equations of the

configuration-space model is much higher than it is in the actuator-space modelling

which is shown in Fig. 4.5.

The NR method based root-tracking imposes a strict condition on the loop-closure

equations explicitly which is reflected in a lower magnitude of errors of the actuator-
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Figure 6.4: Visualising the sparsity ofM andC matrices in the extended-configuration
space vs. configuration-space formulations

space dynamic model as discussed in Section 4.3 as compared to the configuration-

space formulation. On the other hand, the extended-configuration mapped to task-space

formulation involves the computation of IK solutions at each instant which ensures the

loop-closure to be satisfied and hence results in lower errors as shown in Section 5.1.

The error e1 is of the order 10−18 in the extended-configuration mapped to task-space

case as compared to 10−15 in the actuator-space.

6.3 Example: Dynamics formulation and simulation of

6-RSS manipulator

Following the discussion from previous sections, extended-configuration-space is cho-

sen to model the dynamics of the 6-RSS manipulator as an example. The architecture of
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Figure 6.5: The 6-RSS manipulator

this manipulator is shown in Fig. 6.5. Since the moving and the fixed platforms of the

6-RSS manipulator are same as the SRSPM all the axes conventions and vertex num-

bering followed is the same. Further the same assumptions given in Section 2.2 still

hold here.

The centre of the rotary joint axes are at each of its fixed platform vertices with their

central axis tangential to the circle circumscribing the fixed platform. The x-axis is

always aligned with the rotary joint axis and z-axis along with the length of the links by

convention. Variables associated with each element of the manipulator together form

the extended-configuration-space, which in this case are,

qe = [x>,φ>,θ>]>,

where θ are actuator joints, φ are values at the passive spherical joints and x denote

variables representing the geometric centre and the orientation of the moving platform.

This model is used to obtain an estimate of the torque requirements for a given motion

of the moving platform. A mathematical model is developed following the process as

provided in Chapter 5.

6.3.1 Verification of the formulated model

The numerical checks described in Section 4.2 are used here and the results are shown

in Fig. 5.1.
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Figure 6.6: Validation of the extended-configuration-space mapped to actuator-space
mathematical model

6.3.2 Inverse dynamics for heave motion requirement

The moving platform is required to produce a heave motion with constraints on its peak

acceleration of 0.8g m/s2 in the z direction, with the following terminal conditions,

xi = [0, 0, 0.3, 0, 0, 0]> x′i = [0, 0, 0, 0, 0, 0]>

xf = [0, 0, 0.4, 0, 0, 0]> x′f = [0, 0, 0, 0, 0, 0]>,

where xi,xf are the initial and final poses and ẋi, ẋf are the initial and final velocities

of the moving platform given in task-space coordinates.

The extended-configuration-space model is mapped to actuator-space and is used in the

inverse dynamics (ID) simulations, to compute the torques. Newton-Raphson method

based root-tracking is used for the FK computation. The model takes around 0.168 s to

complete the ID simulation for a real-time of 0.3 s. The obtained torque profile is shown

in Fig. 6.7. The manipulator parameters used for the simulation are given in Table ??.
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The torque profile shows that for the achieved configurations during the motion the

motor always supplies the positive torque. Since the initial and final poses have a zero

velocity constraint, the manipulator decelerates as it reaches these positions and hence

we see a peak in the torque profile. A small segment of the manipulator moving up is

shown in the motion profile given in Fig. 6.8.
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Figure 6.7: Torque profile for the heave motion requirement of the moving platform

(a) t = 0.1 s (b) t = 0.2 s (c) t = 0.3 s

Figure 6.8: Configurations of the manipulator during heave motion

6.4 Summary

This chapter draws a comparison between different dynamics models for a given simu-

lation. It is concluded that the extended-configuration-space formulation is the best in

terms of the computational speed and the ease of coding. Modelling a system in the

selected formulation is illustrated with the 6-RSS manipulator for obtaining the torque

requirements for a given heave motion.
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Parameter Value

rb 1 (m)
rt 0.6 (m)
γb 0.8080 (rad)
γt 0.4040 (rad)
Itpxx 1.1717 (kgm2)
Itpyy 1.1717 (kgm2)
Itpzz 2.3431 (kgm2)
Ilxx 0.0283 (kgm2)
Ilyy 0.0283 (kgm2)
Ilzz 6.325×10−6 (kgm2)
Irxx 0.1764 (kgm2)
Iryy 0.1764 (kgm2)
Irzz 5.400×10−6(kgm2)
mp 200.2033 (kg)
mli, i = (1, . . . , 6) 0.5060 (kg)
mri, i = (1, . . . , 6) 0.4320 (kg)
lli, i = (1, . . . , 6) 0.8200 (m)
lri, i = (1, . . . , 6) 0.7000 (m)

Table 6.3: Mechanical parameters of the 6-RSS manipulator used in the simulation of
the dynamics model
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CHAPTER 7

Trajectory-tracking control with the SRSPM

7.1 Introduction

Trajectory-tracking control deals with the problem of moving the end-effector along

a given path. Given a trajectory it is easy to solve the inverse dynamics problem to

obtain the required torques. However, since this computation is done using a model

which is different from the actual system, the same path might not be followed if the

computed torques are given to the system. One way to design a controller is to do a

Jacobian linearisation about an operational point and use the linearised dynamic model

to generate a control law. This works on the assumption that theM andC matrices are

constant throughout the operational range, which is not valid in reality. Such controllers

also do not ensure uniform performance throughout the working range as shown in [18].

Given a reliable dynamics model of the system, one can use non-linear controllers

like feedback linearisation followed by a proportional-derivative (PD) controller. This

technique is also called as computed torque control (CTC) or non-linear dynamics de-

coupling approach. The idea is to transform the model into a linear system by cancelling

the non-linear terms. This approach is similar to coordinate transformation in mechan-

ical systems to make their description simpler. Linear control techniques can be used

once the model is feedback-linearised. Following [47], note that this method has the

following limitations.

1. Not all models can be feedback linearised (if not fully actuated e.g. cart-pole
system);

2. The coefficient matrices are functions of all the; extended-configuration-space
variables, and hence full-state feedback is needed and is assumed that it can be
measured at all times;

3. Robustness cannot be guaranteed under parameter uncertainty.



7.2 Feedback linearisation

In this section a PD augmented feedback linearisation is used to track a given trajec-

tory. It is shown by [7] that for a fully actuated parallel manipulator, loss in the rank

of the force transformation matrix leads to uncontrollable states. In other words, the

manipulator becomes uncontrollable at a gain-type singularity. To avoid such config-

urations, it should be ensured that the followed path does not intersect the singularity

manifold. A more strict condition for a parallel manipulator would be to limit its work-

ing within the SWZ, as defined in [26]. For dealing with a trajectory-tracking problem

in the configuration-space, one may refer to [3].

7.2.1 The SRSPM following a given circular path

In this case, a circle defined in Eq.( 7.1) of radius 0.4 m is to be tracked in 1.57 s with

an initial error from the reference trajectory. The corresponding gains are Kp = 2000

and Kd = 2
√
2000, which makes the tracking slightly over-damped and satisfying a

settling time constraint of t = 0.2 s are used.

x2 + y2 − 0.42 = 0. (7.1)

Figure 7.1 shows the error defined at a given time instant as:

tracking error = ‖ desired position− actual position ‖,

where the blue dotted line represents the desired path and the red solid line represents

the tracked path. The tracking controller has taken only 0.552 s for the simulation.

It is observed, as expected, that for slower end-effector speeds the magnitude of error

is smaller. It would be interesting to study the behaviour of the controller for a high-

frequency input, i.e., while tracking a square, near its vertices. The current dynamic

model enables faster computation of control input thereby reducing the tracking errors.

As expected from the error dynamics, since the eigenvalues are all on the left half plane,

i.e., negative, the errors asymptotically go to zero as seen in Fig. 7.1. Now it is desired

to test the model in two scenarios:

1. Following a path for longer time; to verify that the errors do not accumulate.
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(a) Tracked vs the reference path

0.5 1.0 1.5 2.0 2.5 3.0
time(s)

0.05
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0.15
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0.25

error in the path followed
Error

(b) Error in tracking

Figure 7.1: Following a circular path by SRSPM

2. Following a path with high frequency changes, i.e., like a vertex of a square.

7.2.2 Following a 3D-Lissajous curve with SRSPM

To check the first condition a 3D-Lissajous curve is taken to follow from a given offset

from the desired position at time t = 0. An advantage of the 3D-Lissajous curve is that
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it is time parametrised curve:

x(t) = xp sin(ωxt− δx)

y(t) = yp sin(ωyt− δy)

z(t) = 1 + zp sin(ωzt− δz)

where xp, yp, zp represent magnitude, ωx, ωy, ωz are the frequencies, δx, δy, δz is the

phase difference of parametrised form of the curve, and the details of which are given

in Appendix A. One could also vary the individual frequencies in each of the Cartesian

coordinate can be used to gauge the error response of along that coordinate. The chosen

path is as shown in Fig. 7.2.

Figure 7.2: The 3D Lissajous curve to be tracked by SRSPM

The moving platform is assumed to be parallel to the base for the full motion, i.e.,

{c1, c2, c3} are zero for all time. Extended configuration-space mapped to the actuator-

space model is used for control of the manipulator.

The derivation of the complete control law can be found in [18]. The choice of Kp =

2000 and Kd = 2
√
2000 ensure slight over damped nature and to achieve a settling

time of lesser than 0.2 s. Starting with an initial error, the path is required to be tracked
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in 3.14 s which is simulated in 1.24 s. In case of a physical manipulator, it must be

ensured that the selected gains do not cause saturation in the actuator causing the control

input to be clipped to the maximum. The error in the tracked path after the settling

0.5 1.0 1.5 2.0 2.5 3.0
time(s)

0.05

0.10

0.15

0.20

error in the path followed
Error

Figure 7.3: Norm of the tracking error

time constraint is shown in Fig. 7.4 The tracked vs the desired path are as shown in

0.5 1.0 1.5 2.0 2.5 3.0
time(s)

5.×10-9

1.×10-8

1.5×10-8

2.×10-8

2.5×10-8

error in the path followed
Error after the settling time

Figure 7.4: Norm of the tracking error

Fig. 7.5, where the red line corresponds to the tracked path from an initial error and the

blue dotted line is the desired motion. It is observed that if more time is given for the

manipulator to follow the path the errors further decrease, but this decrease is smaller

and has a significant influence by the controller gains.
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Figure 7.5: Followed vs desired path of the 3D-Lissajous curve by SRSPM

7.3 Following a rectangular path with SRSPM

To check the second hypothesis it is necessary to quantify the manipulators behaviour

at the vertices of a rectangle. The manipulator is required to follow a rectangle of

dimensions, 0.5 (m) × 1 (m), with a time constraint of 4 s. For the above scenario,

the following is the tracked vs desired path shown in Fig. 7.6 Observe the deviation of

Figure 7.6: Followed vs desired rectangular path by SRSPM

the manipulator from its desired path at the vertices. The error in following this path is

given in Fig. 7.7. When the time constraint to followed is halved, i.e., if the manipulator
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Figure 7.7: Error in the followed vs desired rectangular path by SRSPM

is required to follow the square in 2 s, the response is shown in Fig. 7.8. Note that is

Figure 7.8: Followed vs desired rectangular path by SRSPM

this scenario, the manipulator is desired to move fast but due to the finite sampling time

and computation of control input, the error increases from the previous case. However,

the errors can be further reduced by setting the desired time and the gains used. Since

there is no literature to compare the tracking of a square, no comments are given about

the magnitude of the error.

7.4 Summary

A planar circle and 3D-Lissajous curves are followed with the extended-configuration-

space dynamic model, which enables faster computation of control input. The deviation
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of the end-effector from the desired or reference path is shown. The simulation times

and errors are significantly smaller than the ones reported in [3]. Further a square path

is also followed to demonstrate the computational capability of given model to follow

the vertex points effectively. It is to be noted that the time taken for simulation in [3]

is only for a small arc of motion and hence not compared with paths tracked in this

report. But for the time of simulation reported i.e., 2 s the execution time taken was

20 m, whereas in the current report the order of magnitude of time taken for execution

is seconds (less than the time requirement given for following in most cases).
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CHAPTER 8

Conclusion

8.1 Overview

The report begins with a brief survey on modelling, simulation and control of SRSPM

is presented in Chapter 1, from where it is understood that the model is often idealised

to meet real-time execution goals and the errors are compensated by complex control

algorithms which bring down the working bandwidth of the manipulator.

Chapter 2 discusses ways to track the FK solutions faster using root-tracking meth-

ods, followed by two ways in which the velocity Jacobian matrices can be derived.

Newton-Raphson method based root-tracking is used for all the simulations as it has

direct control of the precision of solutions obtained.

The standard formulations in dynamic modelling are illustrated. These models are

then studied and verified for mathematical consistency. Implementation issues, model

breakdowns and common inaccuracies in the validation process are discussed.

Taking useful elements from each of the models an extended-configuration-space

formulation is developed. Since this is a higher dimensional space, it is demonstrated

that it can be mapped to both the task-space and the actuator-space in Chapter 4. This

results in an unconstrained actuator-space dynamic model which can be used for con-

troller design.

All the dynamic models are simulated for a free-fall under the effect of gravity

scenario, and the observations are discussed in Chapter 5. Comparisons of the corre-

sponding implementations and run-times in C++ are given. Further, a few practical

considerations are also discussed to improve the run-time. The relative sparsity of the

coefficient matrices is illustrated, and an example of a dynamic simulation of the 6-

RSS manipulator is also included.

Chapter 6 deals with the trajectory-tracking problem. Feedback linearisation fol-

lowed by a PD control scheme is used for following a circle and a 3D-Lissajous curve.



It is seen that the simulation time and the deviation from the desired path are signifi-

cantly smaller than the values reported in [3].

8.2 Possible extensions

For a robot, generally, the goal description is given in its task-space coordinates. Hence,

as shown in [28], an operational-space approach would allow the system to take high-

level commands in the task-space and execute them in the actuator-space. This is done

by mapping the task-space wrench into the actuator-space forces by a Jacobian matrix:

T = J>ηqF ,

where F is the task-space wrench, Jηq is the Jacobian matrix and T are the set of

actuator-space forces. As seen in Section 5.2, task-space mapped extended-configuration-

space dynamics is faster to compute and deviates lesser than the model mapped to

actuator-space. Hence combining the idea of operational-space control of the manipu-

lator with extended-configuration-space dynamic model would further reduce the exe-

cution time significantly.

The unconstrained dynamics of the actuator and task-space models are obtained

from the extended space by performing mapping given by,

τx = J>qexτe,

τθ = J
>
qeθτe.

Using the above information another way to relate the task and actuator-space forces is

by defining a dynamic wrench-transformation matrixH , such that:

JqexH
> = Jqeθ

H = (J#
qexJqeθ)

>,

where (·)# returns the pseudoinverse of a matrix. Since a pseudoinverse is used, the

elements of H matrix that might have been lost in the nullspace during the transfor-

mation should be extracted by posing additional constraints such as row-reducing the
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Jacobian matrices on both sides and inverting the obtained 6× 6 matrix from the 24× 6

matrix on one side to obtain theH matrix.

Moreover, the properties of the Jηqx matrix should be studied to understand the

possible degeneracies of the mapping between the extended-space and task-space.

Further a model-predictive controller needs to be implemented using the derived

extended-configuration-space dynamics to illustrate the potential of the model in achiev-

ing high controller bandwidth.
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APPENDIX A

Manipulator parameters

Parameter Value

rb 1 (m)
rt 0.5803 (m)
γb 0.2985 (rad)
γt 0.6573 (rad)
Itpxx 1.17172 (kg m2)
Itpyy 1.17172 (kg m2)
Itpzz 2.34310 (kg m2)
Ilaxx 2.1272 (kg m2)
Ilayy 2.1272 (kg m2)
Ilazz 0.00173 (kg m2)
Ilbxx 0.02431 (kg m2)
Ilbyy 0.02431 (kg m2)
Ilbzz 0.00040 (kg m2)
mp 0.20339 (kg)
mbi, i = (1, . . . , 6) 11.3404 (kg)
mai, i = (1, . . . , 6) 1.15719 (kg)
lbi, i = (1, . . . , 6) 0.5 (m)
lai, i = (1, . . . , 6) 1.5 (m)

Table A.1: Mechanical parameters of the SRSPM used in the simulation of the dynam-
ics model

Details of the Lissajous curve are as given in the Table A.2.

Parameter Value

xp 0.400 (m)
yp 0.200(m)
zp 0.133 (m)
ωx 2 (rad1/s)
ωy 8 (rad/s)
ωz 4 (rad/s)
δx π/2 (rad)
δy 0 (rad)
δz π/2 (rad)

Table A.2: Details of the tracked 3D-Lissajous curve



APPENDIX B

Effect of compilers and flags on the execution time of

dynamics models

A few compilers are tested to understand each of their computation and compilation

time advantages. The comparison of their performance in simulating the extended-

configuration-space dynamic model is presented in Table B.1, keeping the optimisation

flags fixed. The documentation of each of the compilers is hyperlinked in the same.

Table B.1: Comparison of compilers with respect to compilation and execution times
for a free-fall simulation time of 0.5 s

Compiler Flag Compilation Execution
time (s) time (s)

gcc -Ofast 28 0.045
clang++ -Ofast 17 0.042
pgc++ -O4 1275 0.611
g++ -Ofast 28 0.042

For a given compiler the effects of various optimisation flags is listed in Table B.2.

Configuration-space dynamic model is compiled with different flags, and the time taken

for compilation and execution are noted in Table B.2.

Table B.2: Comparison of flags with respect to compilation and execution times of the
C matrix

Compiler Flag Compilation Execution
time (min) time (s)

clang++ -O1 4.490 1.750
clang++ -O2 5.042 1.450
clang++ -O3 5.459 1.435
clang++ -Ofast 4.425 0.942

Perf profiler is useful tool in investigating the time taken by each function. This

gives an idea on which kind of operation takes the most amount of time, i.e., a compu-

tation or a substitution and can be optimise accordingly.

https://gcc.gnu.org/onlinedocs/
https://clang.llvm.org/docs/UsersManual.html
https://www.pgroup.com/resources/docs/17.10/x86/pgi-user-guide/index.htm


APPENDIX C

Details of C++ implementation of the dynamics models

Please note that while benchmarking the time for running any piece of code, other

programs running on the PC at the same time have a significant impact on the code

execution timing and might take up to 2-3 times more time. Applications running in the

background can be monitored using htop in Linux. An alternative might be to use the

google benchmark library, which is a micro-benchmark support library, i.e., it can

be used to benchmark code snippets.

All the support and simulation files are uploaded to the repository Dynamics_CPP

in GitLab(https://gitlab.iitm.ac.in/ed14b037/Dynamics_CPP.git).

Every formulation has a support and sim branch directories. The later is ready to

use folder which has a Makefile to build the dynamics model and output an exe-

cutable binary file. All the initial, final conditions, number of steps, solver etc. should

be mentioned in the dynamics_main.cpp file. The support branch can be used

for testing and debugging individual expressions. It can also be used for changes in for-

mulation, parameters, expression optimisation etc., by editing the main .nb file used

for formulating the expressions. Template .cpp files present in this branch are used to

automatically convert the expressions into C++ executable versions. Therefore, for gen-

erating an executable dynamics model, change the .nb file in the support branch and

execute it to generate the model coefficients in C++ and then use the make command

to build the model in the sim branch.

Runge-Kutta-Fehlberg (4, 5) method is used for simulating all the dynamics models,

and its documentation can be found here. It is observed that when Adams solver is used

for simulations in Mathematica R©11.2, there is a chance that it keeps refining its steps

smaller and smaller eventually taking a lot of time during simulation. Whereas explicit

Runge-Kutta method does not have such a problems, but the accuracy of the solutions is

compromised as shown in Fig. C.1. This method is also quite prevalent in the literature

as a general purpose integrator. This method when used for simulation, does not require

the computation of Jacobian matrices as opposed to Adams solver.

https://github.com/google/benchmark
https://gitlab.iitm.ac.in/ed14b037/Dynamics_CPP.git
https://www.gnu.org/software/gsl/doc/html/ode-initval.html
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Figure C.1: Errors using the explicit Runge-Kutta solver for configuration-space dy-
namic model simulation
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