
Dual Quaternion Based Control

Akhil Sathuluri

ED14B037

1 Introduction

1.1 Why use quaternions?

The rotation matrices have inherent problems. The following are a few issues using the conventional

methods of representation of a rigid body:

1. Well known reason of representation singularities using Euler Angles (Gimbal Lock).

2. The rotational part of the transformation matrix is orthogonal, but they drift and cause

unwanted scaling and shearing the object of interest in a computer graphics scenario[1]. Re-

normalisation of these matrices is not a simple task.

3. Quaternions are useful for another reason that they preserve the algebraic nature of the

equations derived from them. They do not produce a complicated set of equations in sines

and cosines.

4. Interpolation of matrices is not straightforward.

1.1.1 Quaternions

A short description of quaternions is given below.

Quaternion, introduced by Hamilton are four-dimensional extensions to the complex numbers we

know. It is represented as,

q = a0 + a1i+ a2j + a3k (1)

where a0, a1, a2, a3 ∈ R and i, j, k are the imaginary components and are defined as,

i2 = j2 = k2 = −1 (2)

ij = k, jk = i, ki = j, ji = −k, kj = −i, ik = −j (3)

1



Another common representation of quaternions is as a scalar and a vector pair as shown,

q = (s,~v) (4)

The addition of two quaternions follows the normal element wise operation, where as multiplication

is as follows,

q1q2 = (s1s2 − ~v1 ~v2, s1 ~v2 + s2 ~v1 + ~v1 × ~v2) (5)

The conjugate of a quaternion and the norm are as defined,

q∗ = (s,−~v) (6)

‖q‖ = qq∗ (7)

Unit quaternions, i.e. ‖q‖ = 1 can be used to represent rotations. Given rotation of a rigid body

by an angle θ about an axis ~k it can be represented as,

q = (cos(
θ

2
), ~ksin(

θ

2
)) (8)

Other useful properties of quaternions are the Hamiltonian operators. For a given quaternion

represented as (1), the Hamiltonian operators are as given [2],

+

H (q) =


a0 −a1 −a2 −a3
a1 a0 −a3 a2

a2 a3 a0 −a1
a3 −a2 a1 a0

 (9)

−
H (q) =


a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1

a3 a2 −a1 a0

 (10)

These operators allow us to manipulate the quaternion multiplication as though they are com-

mutative.

q1q2 =
+

H (q1)q2 =
−
H (q2)q1 (11)

1.2 Why use dual numbers?

The reasons for using dual numbers for representation in robot kinematics are,

1. Allows us to do line transformations.

2. Gives a compact representation of both translation and rotation components, and their ve-

locities, which are represented by a line in the 3D space.

2



1.2.1 Dual Numbers

Given the distance between two lines in 3D as, d and the angle their directions is α,

α̂ = α + εd (12)

where ε2 is defined to be 0

1.3 Why use dual quaternions?

This is a generalisation of a quaternion into a dual number. They carry the advantages of both

using quaternions and dual numbers.

Unit dual quaternions can be used to represent general affine transformations. and are denoted as

below,

q̂ = q +
ε

2
tq (13)

where q represents the quaternion corresponding to the rotation, t represents the quaternion rep-

resenting translation i.e., (0, ~t), where ~t represents the translation vector and q̂ represents the

configuration of a rigid body translated by t and then rotated by q.

2 Dual Quaternion Control

The following method of formulating control law using dual quaternions is as given in [3]

2.1 Forward Kinematics

The robot used in the current study is the six-axis, PUMA 560 robot. The forward kinematic map

in terms of the end-effector dual quaternion is obtained based on the DH parameters given in [4]

q̂ee = q̂1q̂2q̂3...q̂n (14)

where, q̂1 represents the configuration of the end-effector and the other represent the individual

quaternions corresponding to the DH parameters.

2.2 Formulating Jacobian

From here we assume the dual quaternions are mapped to the R8. So we differentiate the eight

dimensional tuple with respect to the actuated variables, i.e. θ1, θ2, θ3, θ4, θ5, θ6. This gives us a

Jacobian of size 8× 6 which we shall call Jdual. This gives us,

˙̂q = Jdual~̇θ (15)

3



2.3 Control Law

Here we only deal with a regulation problem using Jacobian based control. A regulation problem is

nothing but a position control problem, i.e. given a position or a final configuration, we control the

robot to reach that final position. In this case, this is done based on the Jacobian, i.e. the problem

is simplified by considering only the kinematics, ignoring the dynamic effects of the robot.

2.3.1 Error Dynamics

Let the initial configuration of the end-effector be q̂1 and the desired configuration to be q̂d. Let

us define the error to be,

q̂e = q̂d − q̂ (16)

where q̂e represents the error dual quaternion and q̂ represents the configuration at any given

instant.

Differentiating equation (16), gives the following,

˙̂qe = ˙̂qd − ˙̂q (17)

Since, we are dealing with a regulation problem, we have a fixed ˙̂qd and hence its derivative is zero.

˙̂qe = − ˙̂q (18)

Substituting (15) equation in (18) gives,

˙̂qe = −Jdual~̇θ (19)

Let us consider a proportional control of this system and propose the control law to be,

~̇θ = JT
dualKq̂e (20)

This choice is to ensure asymptotic stability of the system making JdualJ
T
dual a positive definite

matrix[3].

This gives the error dynamics to be,

˙̂qe + JdualJ
T
dualKq̂e = 0 (21)

Integrating the equations (21) and (20) together gives us the motion of the end-effector.

4



3 Discussion

The gain parameter K = 185 is tuned to for the performance parameters of settling time of 10

seconds.

The asymptotic convergence of the error is as shown,

Figure 1: Asymptotic convergence of the quaternion error

The corresponding plot of the angles reaching the final position is as shown. With an increase

Figure 2: The trajectory of the six angles of PUMA 560 robot

in the gain as expected the manipulator tries to minimise the error more aggressively.

4 Utility

One of the applications for such dual quaternion based control could be in cooperative task space,

where two robot arms need to move together to perform a task [5].

5



When two robots or a single robot with two hands do a task, using dual quaternions to represent

the task would greatly simplify the task definition. The paper has suggested the use of various

primitives for control. These primitives used in any sequence would give meaningful control to

complete the task.

One of such primitive is the task definition of relative Cartesian position control which is demon-

strated here. Consider the relative quaternion of the end effector to be,

q̂r = q̂∗2q̂1 (22)

q̂r = qr + q
′

r (23)

q
′

r =
ε

2
trqr (24)

Now form this the translation quaternion can be extracted out as,

tr = 2q
′

rq
∗
r (25)

Again consider the quaternion to be tr to be an element in R8. Differentiating this equation gives

and using (11),

ṫr = 2q̇′rq
∗
r + 2q

′

rq̇
∗
r (26)

ṫr = 2(
−
H (q∗r)Jq′r+

+

H (q
′
)Jq∗r)~̇θ (27)

where ~̇θ here represents a 12 dimensional vector. So controlling the relative translation quaternion

which is 4 dimensional gives us the definition of control for all the joint angles.

The similar strategy was used in [5] with four different primitives to perform simple tasks like

grasping a balloon and pouring water in a cup from a bottle with a two armed robot. Using this

new definition of Jacobian for the given task, we implement the control strategy as mentioned in

section (2.3). The following is the asymptotic error convergence plot and the corresponding change

in the angles of both the manipulators.

Figure 3: Asymptotic convergence of the error for relative Cartesian control

6



5 Error in error

Based on the (brief) literature survey of usage of dual quaternions done, it is observed that in

practical purposes it is comfortable to implement control assuming that these dual quaternions are

embedded in R8 as in [3] and [5] to mention a few. But we know that these entities represent

elements from SE(3), and hence the difference between the two values does not yield a distance

measure. It would no longer represent a physically realisable robot configuration as the error is no

longer a unit dual quaternion.

5.1 What do we do?

For the next part of the work, we follow the path of [6], which extends the classical PD controllers

to SO(3) and SE(3).

Following the formulation in [6], we choose to use the logarithmic feedback controller. The setting

given in the paper is generic to any system in SE(3) and an example in SE(2) of a differential mobile

robot is given. In the current work, we extend this formulation to dual quaternions and show its

utility in control of a six-axis serial robot.

6 Error Dynamics

Knowing the fact that dual quaternions represent elements in SE(3), a more reasonable choice of

error would be,

q̂e = q̂∗dq̂ (28)

Differentiating the above term and setting ˙̂q∗d to zero(regulation problem), we get,

˙̂qe = q̂∗d ˙̂q (29)

The logarithmic error feedback in our case would be of the form,

˙̂q = −K log(q̂e) (30)

where K is a matrix positive definite matrix. Unlike the previous case, in this case, we can tune the

gains for linear and angular velocities separately by internally having different coefficients in the

matrix.

There are some interesting properties of a dual quaternion. Similar to any complex number which

can be represented using the Euler’s form, dual quaternions can be represented in a similar way [7].

q̂ = q exp(ε
~t

2
) (31)

7



So applying a logarithm would give us the following,

log(q̂) =
θ~k

2
+ ε

~t

2
(32)

Using the above equations, we reformulate the error dynamics in terms of the elements in se(3) and

implement control over these elements.

Note: Please understand that,

log(q̂) = log(q̂1q̂2) (33)

satisfies but,

log(q̂) 6= log(q̂1) + log(q̂2) (34)

log(q̂)− log(q̂1) 6= log(q̂2) (35)

This is from the fact that dual quaternions multiplication is not same as multiplication in Rn

Instead we have,

log(q̂∗1q̂) = log(q̂2) (36)

7 Discussion

The error in the controlled entities i.e., the error in end effector orientation and the position asymp-

totically go to zero.

Figure 4: Asymptotic convergence of the error for logarithmic feedback

The proportional gain of both the linear and angular velocity components was kept equal to 1

for the above plot.

8



A quick observation is that the variables that converge quickly are the ones corresponding to the

errors in the translation of the end-effector. It is also to be noted that the control scheme for

position is dependent on the angle at every instant.

8 Comparison of the two controllers

Both the controllers were given the same desired, and final quaternion configurations and the

resulting control laws are observed. A same gain value is given to both the controllers. We shall

call the logarithmic controller as logc and difference controller as diffc from now on.

Figure 5: Path traced by the logarithmic controller (red) and the difference controller(blue)

where the three axes represent R3.

Note that diffc travels extra distance than the logc. Also that the initial motion of the manipulatior

is quite rapid as the dots are farther from each other as compared to the red dots. Investigating

the path followed by diffc alone would be as shown below.

9



Figure 6: Curved path traced by diffc

The SE(3) visualisation of the diffc controller is,

Figure 7: The SE(3) visualisation of diffc in two viewing angles

The box represents the R3. The tri-colour axes represent the SO(3) part and the black dots

represent the R3 part of the motion of the manipulator end-effector.

It can be seen that the end-effector does not reach its final configuration in the given time. So

increasing the gain to 185 which matches the settling time with logc is as shown,

10



Figure 8: The SE(3) visualisation of logc in two viewing angles for the controller gain of Kp = 185

The initial part of the trajectory is missing in the above plot as the controller was too aggressive

in the initial part and the motion took place in a very small time.

The SE(3) visualisation of the logc controller is,

Figure 9: The SE(3) visualisation of logc in two viewing angles

So for a given final configuration logc takes a much smaller Kp value 1 compared to the diffc

controller which requires a 185, to achieve the same settling time (within 2% of the final value) of

10s.

It should also be noted that the logc produces a much less curved solution in R3 where as the

diffc controller has a comparatively larger curvature. The path of the diffc controller overshoots the

final position and comes back to the final configuration, which is a serious trouble in applications

like welding and bolting.

The logarithmic controller is arguably in some sense more ”natural”.

11



9 Concluding question

Taking this discussion a step further ignoring the internal actuation, dynamics, structure of the

hand, I ask the following question,

Our eyes cannot perceive SE(3) but can our brains do?

Or does it do even better?

10 Miscellaneous

The scope of the current work is as below,

1. There is yet another way to describe the error. That is by splitting the SO(3) and R3 parts of

the dual quaternion and follow geodesics in each of these space. This approach is called the

Double Geodesic Control, which we have not described here.

2. We have limited ourselves here to a very small subset of the problem. Firstly we deal only

with regulation and secondly we are using only a P controller. One could use PD as well, as

shown in [6].

3. There is no sense of optimality in the formulation, i.e. we do not extremise any objective here.

4. Both the controllers behave abruptly as the gain is increased, but the from the error plots

and animations, we see that logc closes the gap in Cartesian space and then SO(3) whereas

diffc quickly reaches the orientation and then covers the gap in Cartesian space.

References

[1] B. Kenwright, “A beginners guide to dual-quaternions: What they are, how they work, and

how to use them for 3D character hierarchies,” The 20th International Conference on Computer

Graphics, Visualization and Computer Vision, pp. 1–13, June 2012.

[2] B. Akyar, “Dual quaternions in spatial kinematics in an algebraic sense,” Turkish Journal of

Mathematics, vol. 32, no. 4, pp. 373–391, 2008.

[3] H.-L. Pham, V. Perdereau, B. V. Adorno, and P. Fraisse, “Position and orientation control of

robot manipulators using dual quaternion feedback,” in Intelligent Robots and Systems (IROS),

2010 IEEE/RSJ International Conference on, pp. 658–663, IEEE, 2010.

[4] A. Ghosal, Robotics: fundamental concepts and analysis. Oxford university press, 2006.

12



[5] B. V. Adorno, P. Fraisse, and S. Druon, “Dual position control strategies using the cooperative

dual task-space framework,” in IROS’10: International Conference on Intelligent Robots and

Systems, pp. 3955–3960, IEEE, 2010.

[6] F. Bullo and R. M. Murray, “Proportional Derivative (PD) control on the Euclidean group,” in

European Control Conference, vol. 2, pp. 1091–1097, 1995.

[7] O. Bottema and B. Roth, “Theoretical kinematics,” NORTH-HOLLAND PUBL. CO., N. Y.,

1979, 558, 1979.

A Modules

The following functions are written and used for the completion of the above work.

A.1 Quaternions

1. quat: Generates a unit quaternion

2. qmult: Quaternion multiplication

3. cquat: Conjugate of a given quaternion

4. Hp: Generates the
+

H of a given quaternion

5. Hn: Generates the
−
H of a given quaternion

6. decq: Decomposes a quaternion into axis angle form

A.2 Dual Quaternions

1. unitdq: Generates a unit dual quaternion

2. cdualq: Gives the conjugate of a given dual quaternion

3. dqmult: Dual quaternion multiplication

4. dHp: Generates
+

H for the corresponding dual quaternion

5. dHp: Generates
−
H for the corresponding dual quaternion

6. logdq: Return the logarithm of a dual quaternion

7. explogdq: Given a logarithm of a dual quaternion it gives the exponent of it

13



A.3 Miscellaneous

1. R82dual: Converts an element from R8 into a dual quaternion

2. R62dual: Converts an element from R6 into a dual quaternion

3. frameplotter: Given an element in se(3), the module plots the corresponding frame with

respect to an origin

A.4 Initial Conditions

The non-singular initial and final poses of the manipulator are taken from [4]

All the modules and the codes can be found in my github page

14

https://github.com/akhilsathuluri/Dual_Quaternion_Control

	Introduction
	Why use quaternions?
	Quaternions

	Why use dual numbers?
	Dual Numbers

	Why use dual quaternions?

	Dual Quaternion Control
	Forward Kinematics
	Formulating Jacobian
	Control Law
	Error Dynamics


	Discussion
	Utility
	Error in error
	What do we do?

	Error Dynamics
	Discussion
	Comparison of the two controllers
	Concluding question
	Miscellaneous
	Modules
	Quaternions
	Dual Quaternions
	Miscellaneous
	Initial Conditions


